Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Канонические уравнения общей теории возмущений

Канонические уравнения общей теории возмущений  [c.704]

После того как динамическая система описана каноническими уравнениями Гамильтона, возникает проблема решения этих уравнений. В задаче двух тел канонические уравнения Гамильтона могут быть решены аналитически. В большинстве других задач, встречающихся в небесной механике и астродинамике, решить уравнения аналитически не удается. Однако, используя методы общей теории возмущений, можно строить решения в виде рядов. Найденные таким образом решения будут справедливы на некотором отрезке времени. При построении полного решения методом последовательных приближений можно, проводя соответствующие преобразования, на каждом этапе получать дифференциальные уравнения, являющиеся по форме по-прежнему каноническими и имеющие в качестве переменных так называемые постоянные интегрирования, полученные в предыдущем приближении. Описанная процедура может повторяться столько раз, сколько потребуется.  [c.216]


Именно в силу этой инвариантности относительно канонических преобразований, уравнения Гамильтона имеют особое значение в астрономической теории возмущений. Равным образом, уравнения Гамильтона играют важную роль и в общей статистике Гиббса.  [c.294]

Значительная часть Второго очерка об общем методе в динамике посвящена построению теории возмущений на основе канонических уравнений и понятия главной функции. Гамильтон предлагает два метода в теории возмущений. Первый метод основан на введении поправок к начальным значениям переменных в невозмущенной задаче. Второй метод, который мы изложим, тесно связан с теорией канонических преобразований уравнений динамики.  [c.14]

При исследовании устойчивости механических систем, описываемых каноническими уравнениями движения (в частности с гамильтонианом, периоди-134 чески зависящим от времени), существенную роль играет орбитальная устойчивость Применение предложенного А. Н. Колмогоровым метода теории возмущений позволило получить ряд результатов относительно устойчивости и неустойчивости консервативных систем, близких к интегрируемым для бесконечного промежутка времени. При этом выяснилось существенное отличие систем с числом степеней свободы ге 3 от систем с одной или двумя степенями свободы. Так называемые условно-периодические движения, соответствующие интегрируемым системам с п степенями свободы, образуют п-мерные инвариантные многообразия типа тора. Методом Колмогорова доказывается грубость таких торов — они мало видоизменяются, т. е. устойчивы при достаточно малых возмущениях. При и = 1 или п = 2 в фазовом пространстве 2п измерений устойчивые торы лежат в многообразиях 2п — 1 измерений, которые выделяются требованием постоянства энергии, как соосные торы (и = 2) или концентрические кривые п = 1). Поэтому не только траектории, первоначально лежащие на инвариантных торах, но и траектории, находящиеся между ними, остаются между этими торами. В этом случае существование торов гарантирует устойчивость системы. При га >> 3 гг-мерные торы вложены в пространство 2п — 1 измерений, которое они делить уже не могут, т. е. щели между торами сообщаются друг с другом. Поэтому траектория, начинающаяся между торами, несмотря на их устойчивость по отношению к возмущениям, может, извиваясь между торами, уйти на любое расстояние от них, т,. е. оказаться неустойчивой. Примеры, иллюстрирующие эти общие положения, приведены в докладе  [c.134]


Шестая глава посвящена важнейшему разделу механики — гамильтонову формализму. Основная цель этого раздела — представить математические аспекты гамильтоновой динамики как мощный аппарат решения широкого круга задач механики, физики и прикладной математики. В лагранжевом подходе проблема решения уравнений лежит вне рамок лагранжева формализма. Положение меняется в гамильтоновом подходе, который позволяет получить решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. Вся информация об эволюции системы содержится в одной функции — гамильтониане в результате канонического преобразования можно получить новый гамильтониан, который в определенном смысле мал . Более того, поскольку все операции ограничены рамками группы движения кососимметричной метрики, то удается создать универсальные алгоритмы построения приближенных решений. В рамках гамильтонова подхода изложены теория специальных функций, каноническая теория возмущений, метод усреднения нелинейных систем, методы анализа движения системы в быстропеременном внешнем поле и т.д. Особый интерес представляет лекция 30, в которой развит метод Дирака удвоения переменных, позволяющий представить в гамильтоновой форме систему нелинейных уравнений общего вида и получить решения уравнений, описывающих сингулярно-возмущенные системы, решения алгебраических и трансцендентных уравнений, разрешить проблему обращения интегралов и т.д. В лекции 32 приведено решение задачи о движении релятивистской частицы в гиперболическом волноводе, представляющей интерес для проблемы сепарации частиц по энергии и удельному заряду. В рамках канонического формализма рассмотрена задача о движении протонов в синхрофазотроне.  [c.8]

В настоящем параграфе методом канонических преобразований получены основные уравнения задачи при достаточно общих предположениях. Цель нижеследующих преобразований состоит в том, чтобы явным образом выделить некоторые малые параметры задачи и получить уравнения в форме, удобной для дальнейших преобразований с помощью теории возмущений.  [c.270]

Первые четыре главы книги посвящены общим уравнениям движения тел, представляющих изолированную систему, известным интегралам, основным формулам эллиптического движения и разложению различных функций в гипергеометрические ряды и по функциям Бесселя. В гл. 5 достаточно подробно излагаются уравнения Лагранжа для оскулирующих элементов, чтобы читатель мог ознакомиться с основными процессами перехода от эллиптической орбиты к возмущениям планет. В гл. 6 рассматриваются различные классы неравенств —вековые, короткопериодические и долгопериодические. Гл. 7 посвящена разложению в ряд возмущающей функции, сначала в теории Луны, а затем в теории движения планет. В гл. 8 —о канонических уравнениях — шаг за шагом излагаются различные теоретические положения и приводятся простые примеры. В гл. 9 подробно рассматривается решение уравнений эллиптического движения при помощи метода Гамильтона — Якоби. В следующих двух главах излагаются элементы теории контактных преобразований. Гл. 12 посвящена теории Луны Делонэ в ней подробно описывается основная операция и дается практический метод получения решения п желаемой форме. В следующих двух главах рассматриваются вековые  [c.7]

Задачи построения полного интеграла уравнения Гамильтона — Якоби и общего интеграла канонической системы, как доказывается в теории дифференциальных уравнений, математически эквивалентны. Степень трудности их, вообще говоря, одинакова. Однако может быть отмечен ряд частных случаев, когда уравнение Гамильтона — Якоби может оказаться более податливым, чем каноническая система. Об этом говорится в п. 10.14. Более важно то обстоятельство, что решение (10), получаемое с помощью теоремы Якоби, является каноническим преобразованием, а это, как мы увидим в главе 11, значительно упрощает форму уравнений возмущенного движения.  [c.537]


Касательное преобразование Софуса Ли, имеющее исключительное значение в общей теории преобразования, находит применение в механике как в силу своей связи с теорией возмущения, так и из-за того, что так называемые канонические преобразования, сохраняющие форму канонических уравнений движения, столь важные в динамике, являются частным случаем касательных преобразований.  [c.217]

Рассмотрение теории возмущений мы начнем с краткого описания некоторых ее методов, используя простые примеры динамических систем и исследуя движение непосредственно по определяющим его дифференциальным уравнениям. Даже для нелинейного осциллятора с одной степенью свободы (интегрируемая система) разложение только амплитуды колебаний в степенной ряд приводит к появлению неограниченно растущих во времени секулярных членов и расходимости. Решая совместные уравнения для амплитуды и частоты колебаний, Линдштедт [278 J и Пуанкаре [337 ] преодолели секулярность и получили сходящиеся ряды. Их техника описана в п. 2.1а и представлена в общей канонической форме в п. 2.2а. Этот материал составляет основу дальнейшего изложения теории возмущений.  [c.82]


Смотреть страницы где упоминается термин Канонические уравнения общей теории возмущений : [c.114]    [c.6]    [c.31]   
Смотреть главы в:

Небесная механика Основные задачи и методы Изд.2  -> Канонические уравнения общей теории возмущений



ПОИСК



Вид канонический

Возмущение

Канонические уравнения уравнения канонические

Общие возмущения

Общие уравнения

Теории Уравнения

Теория Уравнения общие

Теория возмущений

Теория возмущений каноническая

Уравнения для возмущений

Уравнения канонические



© 2025 Mash-xxl.info Реклама на сайте