Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статика оболочек вращения

При получении канонических систем дифференциальных уравнений для решения задач статики оболочек вращения в качестве обобщенных перемещений (X были приняты и, V, W, i) j, г -2. Соответствующие им внутренние силовые факторы обозначались А, . Если на торце  [c.180]

Разрешающие уравнения статики оболочки вращения допускают разделение переменных в следующих комбинациях искомых величин  [c.542]


В переменных (3.6.12) система дифференциальных уравнений осесимметричной задачи статики оболочек вращения принимает вид  [c.79]

Разрешив систему(3.6.13) относительно производных и перейдя в краевых условиях (3.6.11) к переменным (3.6.12), приведем осесимметричную краевую задачу статики оболочек вращения к следующему виду  [c.79]

Значительный интерес представляют линеаризованные уравнения осесимметричной задачи статики оболочек вращения. Такие уравнения получим, опустив в (3.6.14) квадратичные слагаемые  [c.80]

Отметим, что обыкновенные дифференциальные уравнения возникают не только в задачах статики оболочек вращения, но и в задачах устойчивости и собственных колебаний таких оболочек. Так, представляя решение задачи о собственных колебаниях в форме тригонометрических рядов Фурье и отделяя угловую координату, приходим к линейной краевой задаче на собственные значения для системы обыкновенных дифференциальных уравнений  [c.80]

СТАТИКА ОБОЛОЧЕК ВРАЩЕНИЯ  [c.376]

Статика оболочек вращения  [c.377]

Многие рассмотренные в этой книге задачи статики тонкостенных конструкций приводят к необходимости решать системы обыкновенных дифференциальных уравнений с переменными коэффициентами. В. частности, к краевым. задачам для таких уравнений приводит расчет круглых пластин переменной толщины и расчет оболочек вращения.  [c.446]

В гл. 4 основное внимание уделено многослойным оболочкам вращения, у которых упругие характеристики отдельных слоев примерно одинаковы. Для описания деформирования применяются два подхода. Первый основан на гипотезах Кирхгофа—Лява, второй — на обобщении гипотез С. П. Тимошенко. Рассмотрены способы решения с помощью МКЭ и численного интегрирования систем дифференциальных уравнений задач статики, устойчивости и колебаний, а также вопросы стыковки оболочек с кольцевыми подкрепляющими элементами. Приводится решение задач об осесимметричном деформировании тонкой многослойной оболочки, выполненной из композиционного материала с хрупкой полимерной матрицей, с учетом геометрической, физической и структурной нелинейностей.  [c.122]

Рассмотрим применение кольцевого элемента для решения задач устойчивости оболочки вращения при осесимметричном нагружении. Будем считать, что начальное напряженное состояние оболочки определяется решением задачи статики в линейной постановке, а перемещения в начальном состоянии тождественны нулю. Такие предположения соответствуют модели напряженного, но недеформиро-ванного тела в докритическом состоянии. Нагрузки будем считать мертвыми , т. е. не изменяющимися при переходе системы в смежное состояние. В этом случае решение задачи устойчивости можно получить из вариационного условия (3.29), соответствующего для упругих систем вариационному критерию в форме Брайана. Выделим из оболочки отдельный кольцевой элемент. С учетом работы сил реакций отброшенных частей на дополнительных перемещениях первого порядка малости запишем условие смежного равновесного состояния  [c.145]


Получение канонических систем для решения задач статики, устойчивости и колебаний многослойных оболочек вращения  [c.149]

После выполнения подготовительных операций приступим к вариационной формулировке задачи статики. Рассмотрим кольцевой элемент оболочки вращения, нагруженный внешними поверхностными нагрузками и реакциями отброшенных частей. Для получения разрешающих. уравнений воспользуемся принципом возможных перемещений. Чтобы считать независимыми переменными как коэффициенты вектора обобщенных перемещений X , так и коэффициенты вектора производных , введем с помощью множителей Лагранжа (х) условие связи (4.112), записанное для возможных перемещений, тогда  [c.152]

Отличие матрицы канонической системы (4.143) от матрицы разрешающей системы дифференциальных уравнений для решения задачи статики (4.133) заключается в вычислении для блока [Ah матрицы [5 1 ] [см. (4.141)], в которую входит искомый параметр Л (параметр нагружения) для решения задачи устойчивости или со (квадрат угловой частоты) для решения задачи колебаний. Система дифференциальных уравнений (4.143) позволяет для тонкой многослойной оболочки вращения решать задачи устойчивости и определять критический параметр нагружения. При этом в выражении [Sfi] (4.141) следует положить = 0. Для определения частот ко-  [c.158]

Рассмотрим получение канонических систем дифференциальных уравнений для решения задач статики трехслойных оболочек вращения с жестким заполнителем. Будем считать, что оси упругой симметрии как заполнителя, так и каждого слоя в обшивках совпадают с направлениями координатных линий. За координатную поверхность 2=0 примем срединную поверхность заполнителя. В этом случае будем иметь = г ) (t = 1, 2) = 0 6<3) =  [c.205]

СТАТИКА МНОГОСЛОЙНЫХ ОБОЛОЧЕК ВРАЩЕНИЯ  [c.216]

Оболочки вращения знакопеременной гауссовой кривизны могут быть двух видов. К первому из них относятся оболочки типа тора, у которых кривизна на некоторой особой линии меняет знак (точка Л на рис. 11.4а). Построение асимптотических решений уравнений статики, динамики и устойчивости таких оболочек явилось предметом многочисленных исследований (см., например, [1, 55, 87, 136]). Особо отметим работу  [c.229]

В настоящем параграфе рассмотрен класс осесимметричных краевых задач статики слоистых анизотропных оболочек вращения. Сформулированы и приведены к матричной форме система обыкновенных дифференциальных уравнений, описывающая осесимметричное напряженно-деформированное состояние таких оболочек, и соответствующая ей система граничных условий.  [c.75]

Среди практически важных задач расчета таких оболочек видное место занимает класс осесимметричных задач статики. Укажем, например, на задачу изгиба замкнутой в окружном направлении оболочки вращения — если условия нагружения и опирания оболочки, структура армирования ее слоев не зависят от угловой координаты, то такими же будут и все характеристики ее напряженно-де-формированного состояния. В этой и аналогичных задачах исследование процесса деформирования требует обращения не к общей системе уравнений с частными производными (3.5.1)—(3.5.7), (3.6.3) — (3.6.5), а к ее частной форме — системе обыкновенных дифференциальных уравнений.  [c.76]

Анализируя зависимости (3.6.18), (3.6.7) — (3.6.10), (3.5.6), заключаем, что в линейной осесимметричной задаче статики ортотропной оболочки вращения уравнения кручения оболочки отделяются от уравнений ее изгаба. Если, кроме того, внешние нагрузки не имеют угловой составляющей, то равны нулю угловые компоненты смещения (г) связанные с ними величины, что позволяет понизить размерность системы дифференциальных уравнений (3.6.17) с 12 до 8.  [c.80]


Уже из краткого рассмотрения ясно, что вопросы численного анализа краевых задач уточненной теории оболочек разработаны недостаточно полно. Создание и развитие численных методов их решения остаются важной и актуальной задачей, требующей внимания ученых и специалистов. Этой проблеме посвящена гл. 7, в которой развит эффективный метод численного интегрирования линейных осесимметричных краевых задач статики и задач устойчивости слоистых оболочек вращения, основанный на идее инвариантного погружения.  [c.110]

Роменский В. М. Статика оболочек вращения с односторонне контактирующими слоями Дне.. .. канд. техн. наук 01.02.04.— Защищена 09.04.87 Утв. 09.12.87 04.8.70 007194,- Харьков, 1987,— 192 с.  [c.131]

Китовер К. А. Применение степенных рядов к задачам статики оболочек вращения. — В кн. Сопротивление материалов и теория сооружений. Киев Будивельник, 1973, вып. XXI, с. 132—139.  [c.212]

О решении на ЭЦВМ задач статики оболочек вращения при произвольион иагружении. — В кн. Применение ЭЦВМ в строительной механике. Киев, Наукова думка , 1968, с. 46—51.  [c.365]

Получим каноническую систему дифференциальных уравнений для решения линейных задач статики слоистых ортотропных оболочек вращения с использовчнием данной модели деформирования. При ЭТ0Л1, как и прежде, воспользуемся вариационно-матричным способом и обозначениями (4.58) для оболочек вращения. После анализа выражений для деформаций и изменений кривизн (4.200) в качестве компонент вектора обобщенных перемещений примем  [c.176]

Ниже приводятся описания и тексты вспомогательных программ , обеспечивающих вариационно-матричный способ получения канонических систем дифференциальных уравнений для решения задач статики и устойчивости и колебаний многослойных оболочек вращения получение матриц фундаментальных решений и матриц жесткости кольцевых оболочечиых элементов формирование и решение систем алгебраических уравнений относительно неизвестных обобщенных узловых перемещений,  [c.250]

Рассмотрим многослойную оболочку вращения. Координаты аь 2 направим вдоль меридиана и параллели. Материалы слоев пусть будут ортотропными с осями упругой симметрии, совпадающими с направлениями координатных линий. В этом случае при получении разрешающих уравнений можно пользоваться соотношениями, записанными для амплитудных значений л-й гармоники разложений функции в ряды Фурье по угловой координате 2. Ниже приводятся процедуры получения канонических систем разрешающих дифференциальных уравнений для решения задач статики лмногослойных оболочек вращения общего вида.  [c.216]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]


Смотреть страницы где упоминается термин Статика оболочек вращения : [c.178]    [c.128]    [c.141]    [c.216]    [c.94]    [c.27]    [c.508]    [c.508]    [c.163]    [c.290]    [c.486]    [c.453]    [c.194]    [c.31]    [c.650]   
Смотреть главы в:

Композиционные материалы  -> Статика оболочек вращения



ПОИСК



Оболочки вращения

Статика



© 2025 Mash-xxl.info Реклама на сайте