Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения возмущенного движения материальной системы

Уравнениями возмущенных движений материальной системы вблизи ее положения равновесия в первом приближении будут уравнения в вариациях Пуанкаре с постоянными коэффициента-  [c.236]

Уравнения возмущенного движения материальной системы  [c.622]

УРАВНЕНИЯ ВОЗМУЩЕННОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ СИСТЕМЫ 623  [c.623]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]


Задача об устойчивости заданного движения материальной системы может рассматриваться с различных точек зрения. Речь может идти, во-первых, о разыскании оценок отклонений обобщенных координат и обобщенных скоростей от их значений в опорном движении в любой момент времени, когда начальные возмущения достаточно малы. Об основывающемся на этом воззрении определении устойчивости движения по Ляпунову кратко говорилось в п. 11.10, а составлению уравнений возмущенного движения — уравнений в вариациях — были посвящены пп. 11.14—11.17. Во-вторых, может рассматриваться лишь орбитальная устойчивость, когда вопрос о протекании во времени возмущенного движения отодвигается на второй план, а изучаются лишь траектории возмущенного движения и устанавливаются критерии их близости к опорной траектории. При этом часто, ограничивая постановку задачи, рассматривают только консервативные возмущения — такие, при которых на возмущенных траекториях сохраняется то же самое значение постоянной энергии /г, что и на опорной траектории. Принцип стационарного действия Лагранжа оказывается при этой постановке задачи наиболее приспособленным методом исследования орбитальной устойчивости, поскольку траекториями как опорного, так и возмущенного движений являются геодезические линии многообразия / элемента действия, т. е. простейшие геометрические  [c.721]

П. А. Кузьмин (1957) рассмотрел вопрос об устойчивости при параметрических возмущениях, когда возмущающие силы имеют структуру, полностью определенную полем основных сил невозмущенных движений, и физическое происхождение возмущающих сил связывается с возмущением разнообразных физических параметров, входящих в дифференциальные уравнения движения любой материальной системы. Изложим кратко несколько более общую постановку задачи о параметрических возмущениях, принадлежащую Н. Н. Красовскому (1959). Пусть дана система уравнений возмущенного движения  [c.53]

Для случая малых эксцентриситетов и малых наклонов (ба О, 5 О, 5 = 1, 2,. .., — 1) удобнее рассматривать вместо оскулирующих элементов е. 1 Й . л переменные Лагранжа Ае, к Рз, Яз- Тогда уравнения возмущенного движения системы материальных точек Рь Р .....Р 1 относительно Ро  [c.357]

Рассматриваемый в этом параграфе метод позволяет изучать малые отклонения материальной системы от ее известного движения, которое называется невозмущенным движением. Эти отклонения (возмущения) могут быть вызваны, например, изменением начальных условий. Метод основан на составлении дифференциальных уравнений для возмущений, которые считаются малыми ).  [c.259]


Как известно, еще Г. Галилей и И. Ньютон открыли начала динамики и доказали их достоверность опытами над падением тяжелых тел и объяснением движения планет Ш. Л. Лагранж создал общий метод решения задач динамики. Было, однако, замечено, что не каждое состояние механической системы, отвечающее математически строгому решению уравнений движения или равновесия, наблюдается на самом деле. Это объясняется тем, что в действительности всегда существуют неучитываемые в уравнениях движения малые силы и незначительные отклонения в начальном состоянии материальной системы, которые и возмущают равновесия или движения. Движения, мало изменяющиеся при возмущениях, были названы устойчивыми, а прочие -г неустойчивыми. Таким образом, для выяснения действительной осуществимости движений из числа всех теоретически возможных необходимо было иметь  [c.7]

Допустим, что консервативная механическая система, состоящая из п материальных точек и имеющая одну степень свободы, находится в некотором положении в устойчивом равновесии. Исследуем, какое движение будет совершать эта система, если ее вывести из равновесия малым возмущением. Условимся опять определять положение системы обобщенной координатой q, выбранной так, что при равновесии равновесие устойчиво, а возмущения малы, то координата q и обобщенная скорость q будут во все время движения тоже оставаться величинами малыми. Для составления дифференциального уравнения движения системы воспользуемся уравнением Лагранжа, которое, если выразить обобщенную силу Q через потенциальную энергию системы,П [(см. 143, формулы (115)], примет вид  [c.389]

В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

Как следует из материала гл. 1, нас будет интересовать в основном стационарный отклик на возмущение периодическими электромагнитными полями. Однако все рассматриваемые нами системы подвержены неизбежным стохастическим возмущениям. Затухание, которое было введено в классические уравнения движения феноменологическим образом, обусловлено усредненным действием этих возмущений. Физическое происхождение этих случайных возмущений различно. Тепловое движение в жидкостях, колебания )ешетки в кристаллах, спонтанное излучение, безызлучательный распад при спонтанной эмиссии фононов, столкновения с электронами проводимости, ионные или молекулярные столкновения в газе — все эти процессы могут быть причиной возмущений. При полуклассическом подходе случайное возмущение Ж 1) —оператор, действующий только на рассматриваемую материальную систему. Изменения электромагнитных полей, колебания, движение частиц описываются классически стохастическим образом. Среднее значение Х[(1) > = О, т. е. все матричные элементы  [c.61]



Смотреть страницы где упоминается термин Уравнения возмущенного движения материальной системы : [c.817]    [c.85]    [c.266]    [c.557]   
Смотреть главы в:

Аналитическая механика  -> Уравнения возмущенного движения материальной системы



ПОИСК



Движение возмущенное

Движение системы

Материальная

Материальные уравнения

Система материальная

Системы Уравнение движения

Уравнения возмущенного движения

Уравнения движения материально

Уравнения движения материальной точ



© 2025 Mash-xxl.info Реклама на сайте