Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионно-стойкие (нержавеющие) стали и сплавы

I — коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.  [c.333]

Во влажном хлоре и водных растворах хлоридов титан обладает очень высокой коррозионной стойкостью. В этом отношений титан заметно превосходит лучшие коррозионно-стойкие нержавеющие стали и сплавы на основе никеля.  [c.34]


Детали машин и области применения силовые детали, работающие при температурах от -60 до +60 С могут использоваться взамен дефицитных бронз и латуней, коррозионно-стойких (нержавеющих) сталей и деформируемых алюминиевых сплавов при эксплуатации с приложением больших (в том числе ударных и знакопеременных) нагрузок в различных условиях, включая воздействие морской воды и тумана.  [c.185]

Некоторые металлы и сплавы — титан, алюминий, коррозионно-стойкие (нержавеющие) стали — в определенных условиях не подвергаются электрохимической коррозии вследствие так называемой пассивности. Пассивность — явление сложное, природа его до конца не изучена, но появление пассивности связано с образованием на поверхности металла адсорбционных слоев или пленок.  [c.7]

Результаты испытаний образцов различных материалов на коррозию-в чистой воде при температуре около 250° С позволили следующим образом классифицировать материалы с точки зрения их коррозионной устойчивости. Наилучшей коррозионной стойкостью в воде обладают аустенитные нержавеющие стали, сплавы на основе кобальта, цирконий и гафний. Приемлемые характеристики имеют ферритные и мартенситные нержавеющие стали и сплавы на никелевой или медной основе. Наименее стойкими оказываются углеродистые и низколегированные стали и сплавы на алюминиевой основе.  [c.285]

Условия повышения коррозионной стойкости, виды коррозии и области применения нержавеющих сталей и сплавов Условия хранения нержавеющих сталей и сплавов Сплавы, стойкие в травильных растворах. ...  [c.3]

К сталям и сплавам с особыми свойствами относятся коррозионно-стойкие (нержавеющие) износостойкие магнитные и немагнитные с особыми электрическими и тепловыми свойствами.  [c.262]

Серебро устойчиво в воде лишь до температуры 130° С. Сплавы серебра, например сплав с концентрацией 40—60% серебра, 30% кадмия, 10—30% палладия или 30% серебра, 50% кадмия, 20% золота (вместо золота можно брать 10% цинка) имеют высокую коррозионную стойкость в воде при температуре до 260° С. Сплав серебра с кадмием (88% серебра и 12% кадмия) не стоек в воде, насыщенной кислородом, при температуре 260° С. Сплав же с концентрацией 80% серебра и 20% кадмия устойчив при той же температуре в воде, насыщенной кислородом. Сплавы серебра с кадмием с концентрацией 20, 25 и 30% серебра совершенно не устойчивы в воде, насыщенной кислородом, при температуре 316° С и более стойки при этих условиях в деаэрированной воде [111,252]. При контакте с аустенитной нержавеющей сталью стойкость сплава с концентрацией 75% серебра, 25% кадмия, 0,002% никеля и 0,0001% золота при температуре 260° С ухудшается. В контакте  [c.231]


Сталь, стойкую против атмосферной коррозии, называют нержавеющей. Сталь или сплав, имеющие высокую стойкость при коррозионном воздействии кислот, солей, щелочей и других агрессивных сред, называют кислотостойкими.  [c.245]

Легирование заключается в том, что в состав металла или сплава вводят добавки, которые делают данный сплав коррозионно-стойким. Для стали такими элементами являются хром и никель. Легированием получают нержавеющие, жароупорные и кислотоупорные стали.  [c.70]

Необходимость зачистки устанавливается сварщиком визуально по степени загрязнения поверхности электродов и свариваемых деталей. Скорость и характер загрязнения рабочей поверхности электродов зависит от очень многих факторов. При сварке коррозионно-стойких металлов (нержавеющие, жаропрочные стали и сплавы, титан) без зачистки может быть выполнено очень большое число точек (до 5 тыс.). Сварка же алюминиевых и магниевых сплавов характеризуется быстрым загрязнением электродов (от 10—15 точек до нескольких сотен точек). При роликовой сварке алюминиевых и магниевых сплавов зачистку производят через один—три оборота роликов. Очень интенсивно идет загрязнение электродов и роликов при сварке металлов с покрытиями (лужение, цинкование), а также при наличии на поверхности деталей ржавчины, окалины, масла и других загрязнений.  [c.78]

Производство коррозионно-стойких сплавов (например, высоколегированной хромовой и хромоникелевой стали) само по себе уже является способом борьбы с коррозией. Нержавеющая сталь и чугун, так же как и коррозионно-стойкие сплавы цветных металлов,— весьма ценный антикоррозионный материал, однако применение таких сплавов не всегда возможно из-за их высокой стоимости или по техническим соображениям.  [c.153]

Основной недостаток рассольных хладоносителей — их значительная коррозионная активность [4, 5]. В связи с этим холодильное оборудование, выполненное из углеродистой стали и находящееся в контакте с рассолом, подвергается интенсивной коррозии. Для снижения коррозии необходимо поддерживать в заданных пределах щелочность раствора (pH) и концентрацию ингибиторов коррозии, своевременно удалять продукты коррозии. Невыполнение этих требований технологии приводит к резкому сокращению ресурса работы оборудования систем охлаждения. Использование вместо черных металлов более стойких, но более дорогих материалов, например, хромоникелевых нержавеющих сталей или цветных сплавов, ведет к росту капитальных затрат.  [c.308]

Многие металлы и сплавы, например нержавеющие стали, титановые и алюминиевые сплавы и др., обладают высоким сопротивлением коррозионной усталости из-за образования на их поверхности стойких к воздействию коррозионных сред оксидных пленок. Можно предположить, что постоянное или периодическое разрушение этих пленок, обеспечивающее доступ коррозионной среды к деформируемому металлу, должно активизировать процесс его коррозионно-усталостного разрушения. На практике очень многие детали машин подвергаются одновременному воздействию циклических напряжений, контактирующих элементов и коррозионной среды. Такие условия реализуются, например, при свободной посадке деталей, в узлах трения, болтовых и прессовых соединениях, бурильной колонне, гребных и турбинных валопроводах и т.п. Поэтому изучение влияния внешнего трения на процесс коррозионно-усталостного разрушения металлов представляет собой важную научно-практическую задачу.  [c.29]

Металлургия развивалась от века меди и железа до эпохи более прочных и коррозионно-стойких сплавов. В период 1910-1915 годов были "открыты" и разработаны нержавеющие аустенитные стали. Существенно при этом, что гамма-решетка (г.ц.к.) аустенитной нержавеющей стали явилась фактически той надежной основой, на которой возникли и развивались суперсплавы. Правда, в те времена разработка сплавов для турбонагнетателя шла традиционно, путем упрочнения ферритных сталей.  [c.20]


Скорость коррозии, как правило, увеличивается с повышением температуры, что видно из табл. 1. Однако скорость коррозии многих стойких металлов очень мало увеличивается с возрастанием температуры (в исследованных пределах последней).. Аустенитные нержавеющие стали, сплавы кобальта, титан и цирконий обладают высокой коррозионной стойкостью как при низких, так и при высоких температурах.  [c.57]

Химические свойства. Возможность использования в различных отраслях техники аморфных сплавов определяется еще и тем, что, помимо особых магнитных свойств, аморфные сплавы обладают уникальным комплексом химических и механических свойств. Высокие коррозионные свойства аморфных сплавов сделали их перспективными для использования в технике в качестве коррозионно-стойких материалов. Среди аморфных сплавов на основе железа наивысшую стойкость в агрессивных кислых средах имеют сплавы с определенным сочетанием металлов и неметаллов (высокое содержание хрома и фосфора). Однако высоким сопротивлением коррозии обладают только стабильные аморфные сплавы. Наглядным примером являются аморфные быстрозакаленные сплавы железо—металлоид, не содержащие других металлических элементов, кроме железа. В силу химической неустойчивости аморфного состояния они обладают низкой коррозионной стойкостью. Однако при введении хрома (вместо части железа) резко возрастает химическая стабильность аморфного состояния и, как следствие, растет коррозионная стойкость. Отметим, что в первом случае сопротивление коррозии аморфного сплава железо—металлоид ниже, чем у чистого кристаллического железа, а во втором оно превосходит коррозионную стойкость нержавеющих сталей и высокосодержащих никелевых сталей [427].  [c.303]

Прессованием изготовляют изделия разнообразного сортамента из цветных металлов и сплавов, в том числе прутки диаметром 3—250 мм, трубы диаметром 20—400 мм со стенкой толщиной 1,5—12 мм и другие профили (рис. III.66, б). Из углеродистых сталей 20, 35, 45, 50, конструкционных ЗОХГСА, 40ХН, коррозионно-стойких (нержавеющих) Х18Н10Т и других высоколегированных 168  [c.168]

Так, мягкая сталь обладает превосходными механическими свойствами, легко поддается обработке и является дешевой, но в большинстве случаев имеет слабую сопротивляемость коррозионному воздействию, что приводит к ее постепенному разру-шени1 /0тот недостаток можно устранить, сплавляя сталь с более коррозионно-устойчивыми металлами, например никелем и хромом, для получения коррозионно-стойкой хромоникелевой нержавеющей стали./Но сплавы этого типа относительно дорогостоящи. Более эк номично наносить тонкое покрытие никелем, а сверху — еш,е более тонкий слой хрома. Этот метод широко применяется для получения противокоррозионной декоративной отделки, которая обладает механическими свойствами мягкой стали и сопротивляемостью хрома и никеля к действию коррозии./  [c.7]

При температурах 385—445° С в полифинилах не стойки магний, цирконий и его сплавы, а также гафний [1,69], [1,70]. Цирконий в этих условиях становится очень хрупким из-за образования гидридов. Увеличение содержания воды в полифинилах приводит к значительному возрастанию скорости коррозии. Движение органического теплоносителя со скоростью 9 м/сек увеличивает лишь скорость коррозии циркония [1,70]. Коррозионное растрескивание и контактная коррозия в органических теплоносителях не наблюдаются [1,70]. Скорость коррозии углеродистых, низколегированных нержавеющих сталей и алюминиевых сплавов в полифинилах при температуре 380—445° С не превышает 0,025 мм/год. При температуре 430°С наиболее пригодны для изготовления оболочек тепловыделяющих элементов аустенитная нержавеющая сталь, алюминий типа САП, содержащий до 10% окиси алюминия, и бериллий [1,71]. В качестве основного конструкционного материала для органических теплоносителей может быть рекомендована углеродистая или низколегированная сталь. Это объясняется тем, что в высокотемпературном контуре, заполненном органическим теплоносителем, углеродистая сталь коррозии фактически не подвергается. Если принять соответствующие меры, то можно избежать и отложения продуктов полимеризации на теплопередающих поверхностях. Чтобы улучшить стойкость конструкционных материалов, органические теплоносители необходимо очищать от воды [1,72].  [c.55]

В некоторых условиях для металлов и сплавов, склонных к перепассивации (как, например, для коррозионно-стойких сталей), при дальнейшей анодной поляризации при еще более положительных потенциалах за областью перепассивации наблюдается вновь торможение процесса анодного растворения. Это явление получило название вторичной пассивности. В настоящее время, несмотря на ряд работ, посвященных исследованию вторичной пассивности, главным образом, нержавеющих сталей и никеля [20, с. 5] остается еще не вполне ясным механизм этого явления. Согласно представлениям Т. Хоймана и сотрудников вторичная пассивность коррозионностойких сталей обусловлена пассивацией железа, содержание которого на поверхности возрастает вследствие избирательного растворения хрома. М. Пражак и В. Чигал считают, что явление вторичной пассивации связано с образованием на поверхности сложного оксида (содержащего хром и железо) типа шпинели.  [c.59]

Агрессивные среды в отделении окисления образуются в процессе самого окисления, температура которого доходит до 130°С. Результаты коррозионных испытаний образцов металлов и сплавов в окислительной колонне на Волгодонском химкомбинате показали, что нержавеющие стали Х18Н10Т и 0Х21Н5Т в этих условиях достаточно стойки (скорость коррозии менее 0,01 мм/год). Скорость коррозии алюминия и его сплава АМгЗ исчисляется также сотыми долями миллиметра в год. Поэтому в настоящее время имеются два пути решения вопроса о материальном оформлении окислительных колонн. Их можно изготовлять как из стали Х18Н10Т, так и из алюминия высокой чистоты.  [c.479]


Электроплавильные печи. Эти печи илеют препдгущества по сравнению с другими плавильными агрегатами. В электропечах можно быстро нагревать, плавить и точно регулировать температуру металла, создавать окислительную, восстановительную, нейтральную атмосферу или вакуум. В этих печах можно выплавлять сталь и сплавы любого состава, более полно раскислить металл с образованием минимального количества неметаллических включений—продуктов раскисления. Поэтому электропечи используют для выплавки конструкционных сталей ответственного назначения, высоколегированных, инструментальных, коррозионно-стойких (нержавеющих) и других специальных сталзй и сплавов.  [c.51]

Высоколегированная сталь и сплавы коррозионно стойкие, жаростойкие и жаропрочные широко применяются в промышленности. К высоколегированным отнесены стали, содержащие один или несколько легирующих элементов в количестве 10—55%. К высоколегированным отнесены сплавы, содержащие никеля более 55 % или железа и никеля более 65 %, остальное—другие элементы. Эти стали и сплавы разделяются на три группы коррозионно-стойкие (нержавеющие) против химической, электрической, межкристаллитной коррозии жаростойкие (окалиностойкие), устойчивые против химического разрушения поверхности при температуре более 550 °С в газовых средах, работающие в ненагруженном или слабона-груженном состоянии жаропрочные, имеющие высокую жаростойкость и способные работать в нагруженном состоянии в течение определенного времени прн температуре 1000 °С и более. Стали подразделяются по структуре на классы мартенситный, мартенситно-ферритный, ферритный, аустенитно-мартенситный, аустенитно-ферритный и аустенитный.  [c.213]

Аустенитные нержавеющие стали, содержащие более 45 % Ni, стойки к КРН в кипящем растворе Mg lj, а также, по-видимому, и в других хлоридных растворах (рис. 18.8) [61 ]. Эделеану и Сноуден отметили [48], что нержавеющие стали с высоким содержанием никеля более устойчивы к растрескиванию в щелочах. Увеличение содержания никеля в аустенитных нержавеющих сталях приводит к сдвигу в положительную сторону критического потенциала КРН в растворе Mg la, причем этот сдвиг значительнее сдвига соответствующего коррозионного потенциала. Вследствие этого повышается стойкость сплава [62]. Когда содержание никеля в сплаве достигает и превышает 45 %, его стойкость к КРН перестает зависеть от окислительно-восстановительного потенциала среды, а более важную роль начинают играть факторы, определяемые не средой, а структурой сплава, такие как вредное влияние дислокаций или уменьшение растворимости азота внедрения.  [c.320]

Для работы в агрессивных средах применяют высоколегированные хромоникелевые стали (I4X17H2, 20ХВН4Г9, 12XI8H10 и др.) в паре с мягкими антифрикционными материалами (углеграфиты, наполненные полимерные материалы и др.), а также низколегированные коррозион-но-стойкие чугуны и твердые сплавы (ВКЗ, ВК6, ВК8 и др.). В целях повышения твердости и улучшения коррозионной стойкости все металлические материалы подвергаются термообработке, нержавеющие стали - азотированию и хромированию.  [c.138]

Нержавеющие стали в целом находят весьма ограниченное применение в морских условиях. Успешное их применение основывается на контроле окружающей среды с целью поддержания пассивности металла пли же подразумевает защитные меры, препятствующие местной коррозии. Нержавеющие стали обычно стошш в морских атмосферах, где на от крытой незащищенной поверхности сохраняется пассивная пленка. Благоприятны для поддержания пассивности и условия в быстром потоке морской воды. В спокойной морской воде причиной разрушения металла часто является местная коррозия, в частности ппттинг. Наблюдается также коррозионное растрескивание под напряжением. Однако прп правильном выборе типа сплава, а также режимов упрочнения п старения высокопрочные нержавеющие стали стойки в морских атмосферах.  [c.57]

Существенное преимущество никеля и его сплавов — иммунитет его к коррозионному растрескиванию в растворе хлоридов. Более устойчивы, чем чистый никель и его сплавы К — монель (с концентрацией 66% никеля, 30% меди, до 3,5% алюминия, 1,5% железа), X — инконель (с концентрацией 73% никеля, 15% хрома, 3,5% титана, 1,0% ниобия), G — иллий (с концентрацией 56% никеля, 22,5% хрома, 6,5% железа, 6,5% меди, 1,25% марганца, 6,4% молибдена), хлоримет 2 (63% никеля, 3% хрома, 32% молибдена). В деаэрированном паре при температуре 400° С сплавы никеля достаточно устойчивы. В паре при температуре 500° С инконель корродирует со значительной скоростью [111,247]. В воде при температуре 316° С он межкристаллитной коррозии не подвержен. При деаэрации скорость коррозии снижается. Увеличение pH воды до 9,5 приводит к снижению скорости коррозии отожженной инко-нели. Стабилизирующий отжиг лишь в малой степени уменьшает ее. Сварные соединения инконели и аустенитной нержавеющей стали стойки в деаэрированной воде при температурах до 300° С [111,248]. При температуре 650° С коррозия никелевых сплавов по преимуществу межкристаллитная. Отмечается также обезуглероживание сплавов. При температуре 680° С достаточно стоек хастелой.  [c.227]

Первые парогенераторы реактора PWR изготавливали из труб нержавеющей стали типа 18/8 и хотя этот материал работал удовлетворительно на некоторых станциях более трех лет, появление значительной коррозии под напряжением в процессе эксплуатации привело в большинстве случаев к замене их более коррозионно-стойкими материалами. Широкое распространение получили ннконель и монель-металл, которые обладают устойчивостью к коррозии под напряжением, а для некоторых будущих станций предлагается использовать сплав 800. Увеличение содержания никеля от 40% в инкаллое до 60% в инконеле улучшает сопротивляемость коррозии под напряжением и, хотя и в меньшей степени, питтингу.  [c.186]

Коррозионная стойкость в естественных средах. В разнообразных атмосферных условиях титан является одним из самых стойких материалов. Проведенные Бомбергером в промышленной и морской атмосферах сравнительные испытания по скорости коррозии титана, алюминиевых сплавов, нержавеющих сталей, никель-медного сплава и сплава инконель показали, что за пятилетний срок на всех металлах, кроме титана, были обнаружены видимые продукты коррозии, тогда как образцы из титана даже не изменили блеска поверхности.  [c.30]

Если ограничиться концентрациями до 60—65% и комнатной температурой, то среди существующих сталей можно найти широкий круг материалов, который обнаруживает относительно высокую стойкость. Однако с повышением концентрации кислоты, и в особенности температуры, коррозионная стойкость сплавов резко падает начиная с 80% HNO3, при температурах выше комнатной ни один сплав уже не пригоден. Таким образом, при выборе сплавов для азотной кислоты также приходится учитывать, что имеется ограниченная область концентраций и температур, при которых нержавеющие стали стойки.  [c.382]

Коррозионностойкие стали. Наиболее подробно влияние различных факторов на склонность к питтинговой коррозии было изучено для сплавов железа, главным образом, нержавеющих сталей различных марок. Исследование влияния основных легирующих компонентов коррозионно-стойких сталей —хрома и никеля — показало, что увеличение содержания хрома способствует повышению стойкости сталей к питтинговой коррозии в большей степени, чем увеличение содержания в них никеля. Сплавы Fe—Сг, содержащие 30—35 % Сг и более [61, 87], устойчивы к питтинговой коррозии в нейтральных растворах, содержащих С1 . Особенно благоприятным оказывается введение 1—5 % Мо [50, 61] в нержавеющие стали (в частности, в наиболее распространенные), содержащие 18% Сг, 10—13% Ni. Легирование нержавеющих сталей азотом (0,15—1 %) повышает стойкость к питтинговой коррозии [61, 88—90]. В работе [89] было исследовано влияние различных легирующих и примесных элементов С, N, Р, S, N1, Si, Мп, Ti, Zr, Nb, AI, У, W, Со, Си, Sn, вводимых в сталь состава 17 Сг 16 Ni без Мо и содержащую 4 % Мо. на устойчивость их к питтинговой коррозии. На рис. 27 видно, что наиболее существенно смещение Ет в положительную сторону в сталях без Мо, происходит при легировании ее Мо, N, Си или Ti. В сталях, содержащих 4 /о Мо, дальнейшее повышение стойкости к питтииговой коррозии было получено при добавках N и Si. Ухудшение стойкости к питтинговой коррозии наблюдали при легировании сталей Мп, А1 или Nb.  [c.95]


Наиболее стойкими металлами к сплавами, перечисленными в табл. 1, являются сплавы кобальта, золото, платина, аустенитные, теплоустойчивые и подвергшиеся осадочному упрочнению нержавеющие стали, титан, цирконий и гафний. Из этих материалов платина, нержавеющая сталь AISI-316, титан и кобальтовые сплавы во многих случаях обладают высокой скоростью коррозии (потерь веса) в течение начального периода испытания, а при продолжении опыта показывают высокую коррозионную стойкость. На них образуется тонкая, прочно сцепленная с металлом защитная пленка.  [c.60]

Металлами, обладающими высокой коррозионной стойкостью, являются аустенитные нержавеющие стали (типа 18% Сг и 8% N0 и сплавы, подвергшиеся осадочному улрочнению. Так называемые теплоустойчивые нержавеющие стали с повышенным содержя[ ием легирующих элементов также коррозионно-стойки, но они более дороги. Эти материалы обладают хорошей коррозионной стойкостью и при наличии в воде кислорода. Сенсибилизация сталей путем термообработки или сварки не влияет на их коррозионную стойкость в воде.  [c.60]


Смотреть страницы где упоминается термин Коррозионно-стойкие (нержавеющие) стали и сплавы : [c.126]    [c.116]    [c.249]    [c.2]    [c.48]    [c.256]    [c.370]    [c.291]    [c.200]    [c.6]    [c.49]    [c.598]    [c.175]    [c.16]    [c.284]   
Смотреть главы в:

Материаловедение 1980  -> Коррозионно-стойкие (нержавеющие) стали и сплавы



ПОИСК



118, 119 коррозионно-стойкие

504—505 ( ЭЛЛ) нержавеющие

Коррозионно-стойкие стали и сплавы

НЕРЖАВЕЮЩИЕ СТАЛИ И СПЛАВЫ

Стали и сплавы

Стали коррозионно-стойкие

Стали нержавеющие

Стойка



© 2025 Mash-xxl.info Реклама на сайте