Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловой вид контроля

ВИХРЕТОКОВЫЙ, ЭЛЕКТРИЧЕСКИЙ и ТЕПЛОВОЙ ВИДЫ КОНТРОЛЯ  [c.129]

Все методы теплового вида контроля базируются на обнаружении и регистрации тепловых полей и установлении связи между тепловым полем и изменением температуры работающего изделия (ГОСТ 25314—82).  [c.212]

Во многих случаях методы теплового вида контроля обеспечивают удобство, точность и повышение производительности контроля. С помощью тепловых видов контроля можно обнаруживать следующие дефекты  [c.212]


Методы теплового вида контроля подразделяют на активные и пассивные.  [c.213]

Тепловой метод контроля основан на регистрации ин-фра фасного излучения, исходящего от поверхности нагретого тела. Тепловым источником нагревают контролируемый объект. В зоне несплошности отвод теплоты происходит с иной интенсивностью по сравнению с хорошо проваренным участком шва. Возникающие температурные градиенты в несколько десятых градуса предопределяют различие в тепловом инфракрасном излучении этих участков, которое регистрируется соответствующим приемником и затем преобразуется в электрические сигналы. Этот метод позволяет выявлять как поверхностные, так и внутренние дефекты в виде расслоений, пустот, раковин и других дефектов.  [c.220]

Контроль неразрушающий. Методы теплового вида. Общие требования  [c.474]

Представленные в сборнике результаты расчета влияния излучения посторонних источников при тепловых методах контроля и экспериментальные данные по чувствительности приемников излучения в зависимости от температуры среды и фоновой засветки позволяют учесть влияние излучения посторонних источников при измерении температуры, когда их интенсивность в несколько раз превышает полезный сигнал. Даны результаты исследования по оптимизации магнитных свойств и кристаллической структуры железо-кобальтовых сплавов, используемых в качестве материалов для полюсных наконечников в электромагнитах с высокой однородностью поля. Рассчитана оптимальная конфигурация проводников с током для коррекции поля в электромагнитах радиоспектрометров ядерного магнитного резонанса, показана возможность изготовления системы коррекции в виде плоских проводников с током.  [c.4]

По видам используемого ионизирующего облучения методы разделяются на рентгеновский, у-контроль, р-радиоизотопный, контроль потоком тепловых нейтронов, контроль тормозным излучением ускорителей электронов, контроль потоком протонов и др.  [c.122]

Дистанционные методы теплового вида неразрушающего контроля широко применяют при технической диагностике нефтегазового оборудования. Так, с их помощью осуществляют обнаружение утечек нефтепродуктов из емкостей, резервуаров и трубопроводов, оценивают состояние их изоляционных покрытий и утонение стенок, выявляют несанкционированные подключения к трубопроводам и нарушения залегания их в грунте (разрушение насыпи и обва-ловки, всплытий и обнажений трубы, деформации трубы из-за сезонных подвижек грунтов и т.д.), осуществляют контроль напряженного состояния металла, выявляют наиболее теплонапряженные узлы машинного оборудования, электрооборудования и т. п.  [c.137]


Пуску и наладке котельной установки предшествуют следующие подготовительные работы испытание котельного теплотехнического оборудования (котлов, котлоагрегатов и т. п.) и трубопроводов опробование и испытание котельно-вспомогательного оборудования (насосы, вентиляторы, дымососы и т. д.) промывка котлов и другого оборудования-а также трубопроводов от грязи проверка контрольноизмерительной арматуры и приборов теплового и других видов контроля просушка обмуровки.  [c.237]

Все эти виды контроля, дополняя друг друга, позволяют в совокупности осуществлять надежный водный режим тепловых электростанций.  [c.183]

ГОСТ 23483-79. Контроль неразрушающий. Методы теплового вида. Общие требования.  [c.21]

Контроль с применением приборов основан на получении информации в виде электрических, световых, звуковых и других сигналов о качестве проверяемых ектов при взаимодействии их с физическими полями (электрическими, магнитными, акустическими и др.). В зависимости от принципов работы контрольных средств все известные методы неразрушающего контроля в соответствии с ГОСТ 18353—79 подразделяются на акустические, капиллярные, магнитные, оптические, тепловые, методы контроля течеисканием, электрические и электромагнитные (методы вихревых токов).  [c.163]

Здесь осуществляется метрологический контроль за высокоточными средствами измерений вакуума, температуры (от - 80...5000 град. С), давления (от - 0,1...250 МПа), расхода газов и жидкостей, количества веществ, учета тепловой энергии на предприятиях Башкортостана. Поверяются все виды теплосчетчиков. Специалисты отдела принимают участие в аттестации испытательного оборудования, используемого для контроля качества различной продукции.  [c.92]

Классификация. К средствам неразрушающего контроля (СНК) относят контрольно-измерительную аппаратуру, в которой используют проникающие поля, излучения и вещества для получения информации о качестве исследуемых материалов и объектов. Классификация видов и методов неразрушающего контроля (НК) приведена в ГОСТ 18353—79. В соответствии с ГОСТом НК подразделяют на девять видов магнитный, электрический, вихретоковый, радиоволновый, тепловой, оптический, радиационный, акустический и проникающими веществами. Каждый вид НК осуществляют методами, которые классифицируют по следующим признакам  [c.10]

При контроле реальных объектов необходимо учитывать также эффекты ослабления ИК-излучения в атмосфере или среде, отделяющих изделие от детектора. Физической причиной ослабления ИК-излучения является превращение лучистой энергии в другие виды энергии, в основном, тепловую, а также рассеяние инфракрасных лучей. Спектр пропускания ИК-лучей атмосферой имеет два характерных окна прозрачности (2. .. 5 и 8. .. 14 мкм).  [c.122]

Машинами-двигателями на )ываются машины, в которых тот или иной вид энергии (электрической, тепловой и др.) преобразуется в энергию, необходимую для приведения в движение рабочих машин. К рабочим машинам относятся машины, предназначенные для облегчения и замены физического труда человека по изменению свойств, состояния, формы, размеров и положения обрабатываемого материала и объекта, а также для облегчения и замены его логической деятельности по выполнению расчетных операций и операций контроля и управления производственными процессами. К таким машинам относятся транспортные, землеройные, прядильно-ткацкие, вычислительные и др.  [c.10]

После того как было выявлено воздействие теплового загрязнения, вызываемого сбросом охлаждающей воды крупных ТЭС и АЭС, на рыболовство и другие виды деятельности, в парламенте и других органах приблизительно с 1970 г. начал обсуждаться вопрос о необходимости контроля теплового загрязнения. В Законе о контроле загрязнения воды, принятом в декабре 1970 г., теплота была включена в категорию загрязнений.  [c.141]

На основании тепловых и гидромеханических расчетов проводятся расчеты на прочность, расчеты водного режима, систем контроля и автоматического регулирования. Все виды этих расчетов тесно связаны между собой, и часто результаты какого-либо из них вынуждают вносить изменения во все предыдущие и повторять их заново.  [c.176]


Основная задача, которая решается при использовании средств активного контроля, — это повышение размерной точности деталей за счет устранения влияния на точность обработки износа режущего инструмента, тепловых и силовых деформаций технологической системы. Однако необходимо иметь в виду, что погрешности геометрической формы деталей, вызванные несовершенством отдельных узлов станка, не компенсируются средствами контроля. Поэтому применение даже самых точных приборов не дает возможности гарантировать получение высокой размерной точности изделий, если какой-либо из элементов системы станок—приспособление—деталь—инструмент не отвечает определенным требованиям.  [c.9]

Поскольку возможны перекосы элементов насоса первого контура из-за разности температур по его высоте, была предусмотрена специальная полость вокруг вала, в которой уровень натрия держится постоянным на всех режимах работы. Дополнительно со стороны активной зоны реактора около каждого насоса располагается тепловой экран, выполненный в виде сектора. Для питания верхнего подшипникового узла и УВГ имеется циркуляционная масляная система. Масло подается двумя параллельно включенными насосами (для обеспечения резерва в случае выхода из строя одного из них). Проточная часть насоса первого контура состоит из колеса с двухсторонним всасыванием, подводящих улиток, радиального диффузора и напорной камеры. Материал деталей— нержавеющая сталь 316. Проточная часть выполнена таким образом, что при извлечении выемной части насоса в баке остается напорный коллектор. Уплотнение между напорным коллектором и радиальным диффузором происходит с помощью поршневых колец из карбида вольфрама. Ответным элементом служит стеллитовая втулка, закрепленная в корпусе напорной камеры. Натрий из напорной камеры отводится по четырем трубам, направляющим поток к отдельно расположенному обратному клапану. Рабочее колесо насоса второго контура — диагонального типа, литое. Верхний покрывной диск для удобства контроля профиля лопаток и качества отливки выполнен разъемным. Съемная часть крепится к неподвижной болтами.  [c.189]

Среди конструктивных особенностей узла переднего подшипника турбины заслуживают внимания зубчатая передача от главного вала для привода масляных насосов и регулятора, которая заменила применявшуюся ранее червячную передачу, подверженную в ряде случаев быстрому износу направляющие, расположенные по краям корпуса переднего подшипника, ограничивающие его отставание от рамы при тепловых расширениях сосредоточение в этом блоке основных элементов управления машиной и системы смазки. Все механизмы, расположенные в корпусе переднего подшипника, легко доступны для контроля и ревизии без разборки всего подшипника. Каждый узел, составляющий блок переднего подшипника, сделан так, что может быть испытан отдельно и установлен в собранном виде.  [c.207]

Применяемая методика контроля механических свойств отливок не всегда дает достаточно представительные результаты. Имели место случаи, когда отливки, удовлетворительно прошедшие все виды механических испытаний на заводе, не проходили по требованиям МВН 632-63 при повторных испытаниях на тепловых электрических станциях. Особенно это относится к испытаниям на ударную вязкость хромомолибденованадиевых сталей.  [c.161]

При подборе, обучении и тренировках необходимо постоянно иметь в виду, что весь персонал тепловых пунктов работает подавляющую часть рабочего времени совершенно самостоятельно, без руководства и контроля со стороны инженерно-технического персонала.  [c.293]

Контроль качества, сдача и приемка бетонных и железобетонных конструкций, кирпичной кладки, гидроизоляционных работ, устройства дренажей, забивки свай, закрытых способов производства работ под железнодорожными и трамвайными путями, прокладки дюкеров, сооружения насосных станций, строительства мачт и эстакад под трубопроводы тепловых сетей, сооружения коллекторов и прочих видов работ, выполняемых в общем комплексе строительства тепловых сетей, производятся в соответствии с действующими правилами СНиП.  [c.365]

Задачи, решаемые системами измерения и контроля. Объединенные автоматизированные системы обладают всеми видами энергетического контроля и учета любого вида энергии, поступающей в здание электрической и тепловой энергии, а также газа и мазута.  [c.33]

Радиационный контроль иашел применение в производстве печатного монтажа. Плата подключается к источнику питания и работает в предусмотренном для нее режиме. Регистрация дефектов осуществляется по изменению теплового поля, образующегося при прохождении электрического тока по соединениям. Метод обладает высокой чувствительностью (примерно 1 °С). Еще более высокие результаты получают при сканировании поверхности по отдельным линиям. В этом случае установка позволяет получать информацию о тепловом поле в виде записи на бумагу последовательных амплитудных профилей по линиям  [c.363]

Методы НРК подразделяются на следующие виды акустические, вихретоковые, магнитные, оптические проникающими веществами (капиллярные и течеисканием), радиационные, радиоволновые, тепловые, электрические. При контроле сварных соединений чаще применяются четыре метода радиационные, акустические, магнитные и испытания проникающими веществами.  [c.336]

Методы неразрушающего контроля основаны на взаимодействии различных физических полей, излучений и веществ с контролируемыми материалами и изделиями. В соответствии с ГОСТ 18353-79 различают девять видов неразрушающего контроля акустический, вихретоковый, магнитный, оптический, проникающими веществами, радиационный, радиоволновой,тепловой,электрический.  [c.376]


Методы теплового вида контроля (по ГОСТ 23483-79) основаны на взаимодействии теплового поля объекта с термометрическим чувствительным элементом (термопарой, фоторезистором, термоиндикаторами, пирокристаллом и т.п.) и преобразовании параметров поля (интенсивности, температурного градиента, контраста, лучистостей и др.) в параметры электрического или другого сигнала и передаче его на регистрирующий прибор. Температурное поле поверхности определяется особенностями процессов теплопередачи, зависящими в свою очередь от конструктивного исполнения контролируемого объекта и наличия внешних и внугренних дефектов. Основной характеристикой теплового поля, используемой в качестве индикатора дефектности, является величина лоюльного температурного градиента.  [c.135]

В настоящее время для обнаружения и идентификации дефектов используется широкий спектр методов неразрушающего контроля (НК). Современная классификация методов НК включает девять видов контроля электрический, магнитный, вихретоковый, радиоволновой, тепловой, визу-ально-измерительный, радиационный, акустический и проникающими веществами. По причинам конструктивного и эксплуатационного характера при диагностировании сварных аппаратов используются, в основном, следующие методы НК магнитный контроль (ГОСТ 24450), капиллярный контроль (ГОСТ 24522), акустический контроль (ультразвуковая дефектоскопия ГОСТ 14782 и толщинометрия, метод акустической эмиссии), радиационные методы (ГОСТ 7512 рентгеновский, гамма- и бета-излучением). При этом следует отметить, что радиационные методы применяются преимущественно на стадии изготовления аппаратов, а использование магнитного метода носит эпизодический харак гер. Руководящие документы по оценке 1екущего состояния  [c.175]

Тепловой метод контроля основан на изменении распределения теплового излучения, испускаемого исследуемым изделием, при наличии в нем дефекта. Большая работа по разработке теплового метода проводится в НИИ интроскопии (Н. А. Бекешко, А. Б. Упады-шев). Тепловой метод может быть применен для контроля листовых сварных соединений из пластмасс со снятым гратом. Схема контроля достаточно проста. С одной стороны изделия размещают источник нагрева — плазмотрон, лазер и др., а с другой стороны изделия — приемную аппаратуру. Так как поверхность большинства пластмасс не может быть нагрета до температуры выше 100° С, то для контроля пластмассовых изделий необходима приемная аппаратура повышенной чувствительности. Б настоящее время в НИИ интроскопии разработана универсальная приемная система для теплового контроля типа ОГ-1 и ОГ-2 [8]. Из-за низкой тепло-проводости пластмасс для их прогрева по всей глубине необходимо достаточно большое расстояние между тепловым источником и приемной аппаратурой или сканирование с малой скоростью. Применяемая приемная аппаратура дает возможность представить картину распределения температуры по поверхности. изделия в виде изображения на экране электронно-лучевой трубки или на фотобумаге, а также в записи амплитудных профилей при сканировании по отдельным строкам. Тепловой метод позволяет определить форму, размеры и местоположение больших дефектов типа нарушения сплошности.  [c.186]

Контроль тепловых режимов эксплуатации. Воздействие окружающей среды на работу оптических систем проявляется в виде температурной деформации элементов, приводящей к возникновению нескомпенсированных аберраций. Среднесуточный перепад температур, например в горных районах, составляет около 50—60 С. Температурные хзеформации особенно необходимо учитывать при изготовлении оптических элементов астрономических телескопов и их работе.  [c.110]

Источники энергии СВЧ. Электромагнитные волны СВЧ могут быть генерированы как в виде монохроматических (когерентных) поляризованных колебаний, так й в виде некоге-рентного, хаотического излучения, обусловленного тепловым движением атомов и молекул. Для неразрушающих методов контроля применяют в основном когерентное поляризованное излучение.  [c.211]

Контроль над загрязнением. В 1969 г. на угольных ТЭС, расположенных на больших реках, использовались прямоточные системы охлаждения. В настоящее время на таких ТЭС уже должны использоваться замкнутые системы водяного охлаждения из-за введенных ограничений по тепловому загрязнению. В 1969 г. простые электростатические золо-улавливатели, характеризующиеся относительно небольшими КПД, использовались в основном для защиты вытяжных вентиляторов от коррозии и улучшения внешнего вида дыма, выходящего из труб. В настоящее время для удовлетворения требований по ограничению содержания в дымовых газах твердых частиц необходимо использовать высокоэффективные электростатические пылеулавливающие камеры.  [c.83]

I Большое влияние на технологию оказывают также качественные изменения конструкций машин. Особое развитие в машинах получили автоматизированные приводы, а также системы контроля и регулирования. Возросли рабочие параметры машин, а вместе с ними — силовые, скоростные и тепловые нагрузки на детали. При изготовлении современных машин все шире применяют новые, обычно труднообрабатываемые материалы.j усложнением конструкций и увеличением нагрузок на детали проблема качества их изготовления и высокой надежности выпускаемых машин стала одной из основных в технологии машиностроения. Все это потребовало более глубокого изучения и совершенствования сущ,ествующих, а также разработки новых, высокоэффективных методов и процессов обработки. Появились новые виды инструментальных материалов, освоен выпуск и находят все большее применение синтетические сверхтвердые материалы (алмазы и кубический нитрид бора), большое развитие получили методы отделочно-упрочняюш,ей обработки, расширяется применение электрофизических и электрохимических способов обработки.  [c.3]

Многоцелевые станки с ЧПУ (обрабатывающие центры) с середины 70-х годов стали выпускаться в СССР и за рубежом во все возрастающих количествах. Они позволяют при применении спутников автоматизировать выпуск широкой номенклатуры корпусных деталей и являются одним из основных видов оборудования ГАП, Уже работают ГПС, обеспечивающие изготовление 100—300 деталей различных наименований. Обрабатывающие центры снабжены суппортами, шпинделями, подача которых контролируется встроенными датчиками, поворотными столами также со встроенными датчиками, что обеспечивает возможность программируемого поворота на большое число различных углов револьверными головками или магазинами с числом инструментов, составляющим десятки и сотни штук датчиками касания для проверки правильности и базирования спутников или деталей, контроля закрепления детали, распределения припусков и точности. Датчики касания могут быть использованы и как средства диагностирования. Установка на нуль датчиков станка может быть проверена с помощью датчиков касания (нулевых головок) и специальных базовых поверхностей на станине станка. Таким же образом могут быть измерены тепловые деформации шпинделя. Ряд станков оснащен средствами автоматизации загрузки устройствами автоматической смены поддонов-спутников и средствами распознавания маркировки поддонов. Предусматривается возможность загрузки и разгрузки поддонов с помощью автоматических транспортных тележек и промышленных роботов, применяются средства счета обработанных деталей и планирование смены инструмента по времени его работы. Решаются вопросы диагностирования состояния инструмента. Для этого применяется ряд методов контроль по величине усилий резания (тензометрирование на резцедержке) контроль усилий, действующих на переднюю опору шпинделя (тензометрирование наружного кольца подшипника) определение  [c.145]


Основным способом представления информации и обобщенного контроля на ЭЛИ является вызов мнемосхемы на экран. На мнемосхеме могут высвечиваться текущие значения измеряемых и вычисляемых параметров, индицироваться степени открытия регулирующих органов, состояние механизмов и арматуры, виды управления и т. д. На этапных мнемосхемах укрупненно фиксируется состояние объекта в целом, связи между отдельными агрегатами и элементами, а также указываются участки, где произошли те или иные технологические отклонения. На фрагментах мнемосхем собирается детальная информация, относящаяся к конкретному узлу оборудования или тепловой схемы, индицируются (сигнализируются в случае опасных отклонений) значения технологических параметров. С помощью ЭЛИ обеспечивается двухступенчатый (иерархический) принцип вывода информации оператору с переходом от общего к частному. При использовании систем множественного контроля может использоваться третья, разъясняющая ступень вывода информации. Так, например, при перегреве одного из подшипников питательного насоса на этапной мнемосхеме возникает сигнал неисправности узла питательных насосов (ПН), на фрагменте питательных насосов появляется групповой сигнал о перегреве подшипников, а по таблице подшипников  [c.479]

Последнее уравнение (3.65) зависит от двух предыдущих, так как обш,ий расход G = (Gj -f 3 + G2) = onst, однако его удобно использовать для контроля точности численного метода. Для постоянного теплового потока уравнение (3.65) интегрируется в виде  [c.125]

Во время подготовки доклада мы располагали результатами [Л. 15] вычислений при температуре свободного потока, равной 392° R. Анализ в настоящем докладе распространяет этот параметр на широкий диапазон температур. Поэтому он используется для контроля за. точностью приведенных выше формул. Результаты нашего анализа нанесены в виде точек на рис. 8 и 9. Уравнения (9) и (10) изображены в виде пунктирных линий, а линиями тире— штрих нанесены другие формулы, которые изложены Гроссом, Хартнетом, Массоном и Гейзли в статье Обзор характеристик бинарного пограничного слоя (Л. 15] специально для водорода как охладителя. Два других рисунка показывают, что общие формулы (9) и (Ю) до некоторой степени недооценивают уменьшение коэффициента трения, так же как и теплового потока, поскольку особые формулы для водорода достаточно хорошо  [c.76]

Руководство и контроль за ценообразованием в стране осуществляет Государственный комитет СССР по ценам. Он утверждает постоянные (на длительный период) оптовые цены на главнейшие виды продукции, а также тарифы на электрическую и тепловую энергию, на все виды транспортных перевозок и т. п Цены, не предусмотренные действующими прейскурантами на продукцию, изготавливаемую для внутренних нужд предприятия и услуг капитальному сроительству (как разовые заказы), утверждают директора предприятий.  [c.460]

Блок 3. Для разработанного первоначального варианта конструкции РЭС моделируется ее тепловой режим (ТР) при помош и соответствуюш их программных средств. Для анализа теплового режима используется макромодель всей конструкции, т. е. осуш,ествляется контроль теплового режима конструкции самого верхнего уровня иерархии (стойки, блока или микроблока). В потоке исходной информации для моделирования ТР могут быть использованы данные ТЗ (информационный поток ДтзЗ), в качестве которых могут выступать воздействуюш ие температуры окр окаюш ей среды и их временные диаграммы допустимые перегревы или интегральные температуры отдельных конструктивных узлов или ЭРЭ вид охлаждения и его параметры и т.п.  [c.67]


Смотреть страницы где упоминается термин Тепловой вид контроля : [c.135]    [c.207]    [c.84]    [c.319]    [c.74]    [c.552]    [c.92]   
Смотреть главы в:

Основы технической диагностики нефтегазового оборудования  -> Тепловой вид контроля



ПОИСК



Автоматизация, дистанционное управление и тепловой контроль на электростанциях

Автоматизация, дистанционное управление и тепловой контроль электрической станции

Автоматика и тепловой контроль

Библиографический указатель литературы и журнальных статей по водоподготовке, водному режиму и химическому контролю на тепловых электростанциях за

Визуальный контроль герметичности Проверка компрессии Проверка и регулировка тепловых зазоров клапанов Запуск двигателя с использованием внешнего аккумулятора Неисправности двигателя Смазка двигателя

Вихретоковый, электрический и тепловой виды контроля

Глава четырнадцатая. Тепловой контроль и автоматика

Допустимые нагрузки и тепловой контроль электрических машин и трансформаторов

Задачи автоматизации и контроля в тепловых сетях

Использование энтропийного метода для контроля эксплуатации тепловых электростанций

Контроль за состоянием и очисткой сточных вод тепловых электростанций Челябэнерго, У хин

Контроль за тепловым режимом печей

Контроль качества воды для подпитки тепловых сете

Контроль качества и сдача тепловой изоляции

Контроль качества тепловой изоляции

Контроль тепловых перемещений

Метод контроля тепловой

Оптический тепловой контроль

Правила контроля сварных соединений трубных систем котлоагрегатов и трубопроводов тепловых вдектростяяцнй НК Л ОЗЦС

Приборы теплового контроля и автоматические регуляторы тепловых процессов

Тепловой и аэродинамический контроль на газоотводящих трубах

Тепловой контроль за работой пароперегревателей

Тепловой контроль и автоматизация (инж. Д. К Широкий) Задачи теплового контроля и автоматизации

Тепловой контроль и автоматическое регулирование

Тепловой контроль на электрической

Тепловой контроль на электрической станции

Тепловой контроль на электростанции

Химический контроль водного режима тепловых сетей

Химический контроль за водоподготовкой и водным режимом на тепловых электростанциях

Химический контроль на тепловых электростанциях



© 2025 Mash-xxl.info Реклама на сайте