Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контроль прошедшим излучением

Рис. 178. Схема радиационного контроля прошедшим излучением Рис. 178. Схема <a href="/info/120336">радиационного контроля</a> прошедшим излучением

Контроль прошедшим излучением  [c.92]

Методы радиационного контроля прошедшим излучением различаются способами детектирования результатов взаимодействия излучения с объектом контроля и, соответственно, делятся на радиографические, радиоскопические и радиометрические.  [c.93]

Па рис. 7.1 показана типичная схема теневого дефектоскопа с визуальным, изображением поля прошедшего излучения. Источник 1 УЗ-волн обычно достаточно большой, чтобы интерференционными явлениями в ближней зоне можно было пренебречь и считать с достаточной точностью поле излучения плоской однородной волной. С этой же целью его, наоборот, можно сделать малым, чтобы работать в дальней зоне, но в этом случае амплитуда поля суш,ественно снизится. УЗ-волны проходят через объект контроля 2. При наличии в объекте контроля дефекта однородность поля нарушается и позади дефекта образуется звуковая тень. Для повышения контрастности и четкости изображения прошедшие лучи обычно фокусируют ультразвуковой линзой 3. В фокальной плоскости линзы возникает акустический рельеф, т. е. определенное распределение интенсивности или амплитуды в плоскости поперечного сечения звукового пучка, соответствуюш,ее наблюдаемому дефекту. Чтобы сделать звуковой рельеф видимым, применяют различные устройства, называемые акустико-оптическими преоб-разователя.ми 4.  [c.392]

Наибольшее распространение при этом методе контроля получили алюминиевые пластины, на которые наносят слой аморфного селена. Такую пластину, как и рентгеновскую пленку, помещают в светонепроницаемую кассету. Перед просвечиванием поверхность селенового слоя заряжают электрическим зарядом. Под действием прошедшего ионизирующего излучения поверхностный электрический заряд стекает через алюминиевую подложку. При этом степень разрядки пропорциональна дозе прошедшего излучения. В результате на поверхности пластины появляется скрытое электростатическое изображение, которое проявляют путем опыления мелким сухим порошком, которому сообщен электрический заряд, знаком противоположным знаку заряда полу-  [c.125]

Радиографический контроль, основанный на использовании ионизирующего излучения позволяет получать изображения внутренней структуры сварного соединения (рис. 3). Интенсивность излучения, прошедшего сквозь контролируемое изделие, меняется в зависимости от плотности материала и толщины. По результатам измерения интенсивности прошедшего излучения за объектом определяют наличие в нем дефектов.  [c.8]


Рис. Схема радиационного контроля методом прошедшего излучения Рис. Схема <a href="/info/32401">радиационного контроля методом</a> прошедшего излучения
Радиоволновые для контроля методом прошедшего излучения отраженного излучения собственного излучения Прочие  [c.10]

Томограф ВТ-1500 в отличие от описанных моделей основан на преобразовании высокоэнергетического излучения при просвечивании объекта контроля веерным пучком в электрический сигнал на выходе многоканальной матицы детекторов, пропорциональный изменению интенсивности прошедшего излучения. Просвечивание проводят при различных ракурсах в процессе непрерывного вращения объекта.  [c.164]

Радиометрический метод. Он основан на просвечивании изделий ионизирующим излучением с преобразованием плотности потока или спектрального состава прошедшего излучения в пропорциональный электрический сигнал. Любая система радиометрического контроля содержит источник излучения, детектор, схему обработки и регистрации информации (рис. 16.56). В качестве источников излучения применяют в основном у-изотопы, ускорители и реже рентгеновские аппараты. Детекторами излучения являются главным образом сцинтилляционные кристаллы с фотоэлектронными умножителями (ФЭУ), реже - ионизационные камеры и газоразрядные счетчики.  [c.280]

В радиографическом и радиоскопическом методах автоматическая обработка результатов контроля до настоящего времени встречает некоторые трудности. Этих недостатков лишен радиометрический метод контроля [1, 52]. Радиометрический метод основан на просвечивании исследуемых объектов узким коллимированным пучком излучения и регистрации прошедшего излучения высокоэффективными детекторами сцинтилляционными кристаллами, газоразрядными счетчиками и др. (рис. 60).  [c.130]

Схему с проникающим излучением используют, когда возможен доступ к изделию с двух сторон, а схему с отраженным излучением — когда источник и приемник радиоактивного излучения можно расположить с одной стороны от изделия (например, при контроле толщины покрытия). Интенсивность потока излучения Ф, прошедшего через слой вещества  [c.159]

Для измерения толщины используют метод отражения и резонансный метод. В редких случаях (при наличии двустороннего доступа) применяют также метод прохождения. При контроле методами отражения и прохождения измеряют время пробега импульса в объекте контроля. Иногда определяют амплитуду прошедшего сигнала или его фазу (при непрерывном излучении). Рассмотрим лишь принципиальные вопросы измерения толщины с учетом наличия работ [45, 49, 59].  [c.399]

Большое значение при проведении неразрушающего контроля изделий имеет правильный выбор наиболее эффективных методов. В связи с этим методы контроля дефектов (методы дефектоскопии) полимерных материалов представляют значительный интерес. При этом следует иметь в виду, что способы реализации методов контроля физико-механических характеристик материалов и методов дефектоскопии имеют принципиальное различие. Если первые методы основаны на определении физических параметров с последующей их корреляцией с механическими характеристиками материалов, то методы дефектоскопии основаны на прямом преобразовании энергии излучения, отраженной от дефекта или прошедшей через контролируемую среду. В табл. 3.1 приведены основные факторы, вызывающие образование дефектов, виды дефектов и методы их контроля, Показано, что контроль качества  [c.81]


Гамма-дефектоскопия может быть, использована для контроля металла толщиной до 300 мм. С одной стороны помещают источник излучения (обычно кобальт-60), с другой стороны — сверхчувствительную пленку, которая засвечивается гамма-излучением, прошедшим через металл. На заснятых пленках газовые раковины в отливках выглядят в виде затемнений благодаря меньшей толщине слоя металла с четким очертанием контура, усадочные раковины — со слабо выраженным очертанием, трещины выглядят как интенсивные темные ломаные линии и т. д. Путем просвечивания проникающим излучением может быть выявлена ликвация металла. Ценным свойством гамма-дефектоскопии является возможность установления наличия дефектов в сварных швах и выявление их характера, непровар, трещина, газовая или шлаковая раковина.  [c.214]

Под действием энергии излучения, прошедшего через контролируемое изделие, люминесцентный экран, расположенный на его пути, начинает светиться, воспроизводя видимую картину скрытых неоднородностей. Картину, возникающую на люминесцентном экране, рассматривают через свинцовое стекло, защищающее оператора от вредного воздействия излучения. Яркость свечения экрана пропорциональна интенсивности падающего на него потока рентгеновского или v-излучения. Флюорографический метод контроля изделий поясняется рис. 5.49.  [c.530]

Контроль качества соединения просвечиванием рентгеновскими лучами основан на различной интенсивности излучения в местах дефекта и бездефектного материала. Излучение, прошедшее через сплошной шов, будет больше ослаблено, чем излучение, прошедшее через шов, имеющий дефекты. Основные достоинства этого метода — наглядность и объективность. Однако ввиду длительности процесса просвечивания и фотообработки пленки рентгенографию применяют лишь при выборочном контроле и для расшифровки дефектов, выявленных другими методами.  [c.569]

В результате проведенного анализа различных неразрушающих методов было установлено, что наиболее эффективным методом контроля физико-механических характеристик стеклопластиков является импульсный акустический метод. Так, акустические параметры волнового процесса имеют функциональную связь с прочностными и упругими характеристиками, вязкостью, дефектами структуры материалов и другими свойствами. Значительный практический интерес представляют такие акустические параметры, как скорость и затухание упругих волн, спектр излученного и прошедшего через среду сигнала. При этом одним из основных акустических параметров является скорость распространения упругих волн.  [c.73]

Основным недостатком радиометрии является появление сигналов от дефекта и локальных измерений толщины изделия (выпуклости шва), определяемых состоянием внешней поверхности и качеством обработки. Это затрудняет возможность определения формы, размеров и глубины залегания дефекта. Для уменьшения влияния неровностей поверхности сварного шва разработана методика оптимизации размеров детекторов в зависимости от среднего периода неоднородности выпуклости сварного шва. Помеха, связанная с колебаниями толщины, устраняется пространственной фильтрацией, которая осуществляется путем выбора размера радиометрического детектора. Пространственная фильтрация основана на том, что колебания толщины характеризуются периодичностью. Поверхность сварного шва можно представить в виде суммы синусоидальных колебаний толщины, причем амплитуда определенной синусоиды зависит от длины волны. С помощью радиометрического детектора, регистрирующего излучение, прошедшее сквозь контролируемый сварной шов, усредняется толщина контролируемого материала вдоль продольного размера детектора. Поэтому при радиометрическом контроле происходит сглаживание спектра. Варьируя размер детектора, можно исключить из исходного спектра определенные гармоники. Например, если в продольном размере детектора укладывается целое число основных гармоник спектра неоднородности сварного шва, то основная гармоника сглаживается. Пространственная фильтрация позволяет значительно уменьшить помеху, обусловленную неоднородностью сварного шва. На основании этой  [c.39]

Для получения информации в неразрушающем контроле (далее НК) используют все виды физических полей и излучений, химических взаимодействий и процессов. Зарождение НК обычно относят ко времени открытия в ноябре 1895 г. рентгеновских лучей, которые позволили обнаружить металлический предмет в закрытой деревянной коробке. За прошедший после этого период разработано большое число различных видов и методов НК.  [c.22]

Теоретическим пределом чувствительности метода изотопной га.мма-дефектоскопии при заданной производительности контроля являются шумы , вносимые статистическими флуктуациями самого источника излучения. В идеальном случае пределом чувствительности метода можно считать величину изменения интенсивности прошедшего через изделие излучения, превышающую  [c.62]

Рентгеновские и радионуклидные измерители широко используют для бесконтактного автоматического контроля толщины листового проката путем регистрации прошедшего через материал излучения. Подбором необходимых ускоряющих напряжения и тока рентгеновской трубки с помощью рентгеновских толщиномеров можно осуществлять контроль, например, стального проката толщиной 0,002. .. 25 мм с погрешностью измерения 0,2 % от верхнего значения, диапазона измерений.  [c.110]

Современными методами НК и Д освоен практически весь частотный Диапазон электромагнитного спектра, акустические волны, электростатические поле и корпускулярное излучение, что позволяет создавать поисковые аппаратурные средства, обеспечивающие видение внутренней структуры практически любого объекта контроля в прошедших, отраженных или рассеянных лучах с заданным коэффициентом трансформации размеров изображения.  [c.627]


Радиационные методы контроля основаны на регистрации и анализе ионизирующего излучения при его взаимодействии с контролируемым изделием. Наиболее часто применяются методы контроля прошедшим излучением, основанные на различном поглощении ионизирующих излучений при прохождении через дефект и бездефектный участок сварного соединениу(рис. 178). Интенсивность прошедшего излучения будет больше на участках меньшей толщины или меньшей плотности, в частности в местах дефектов - несплошностей или неметаллических включенир  [c.344]

Основным методом радиапионного контроля в гражданской авиации является рентгеновский (прошедшего излучения и теневой) радиографический метод. На основе рентгеновского излучения используется графический способ представления информации в виде фиксированного изображения на пленке. Учитывая методическую сложность, трудоемкость и низкую чувствительность метода, его применяют только в тех случаях, когда другими методами контроль осуществить нельзя. Выше уже был приведен пример ситуации с применением такого метода контроля к замкнутым полостям конструктивных элементов ВС. Помимо того, контроль проводят и с целью обнаружения влаги в сотовых конструкциях, например в самолетах Ил-86 и Ил-96.  [c.70]

Дальнейшим развитием радиографии является радиационная вычислительная томография. В отличие от обычной радиографии объект просвечивается большим количеством источников излучения, прошедшее излучение фиксируется большим количеством детекторов, изделие перемещается по определенной программе, результаты контроля запоминаются и анализируются с помощью ЭВМ, а затем на основе созданной модели внутренйей структуры объекта формируется ее изображение на экране, т.е. обеспечивается наглядность, отсутствующая при обычной радиографии.  [c.350]

Ипользование в радиоскопическом контроле рентген-видиконов (рис. 79) основано на следующем. Электронный луч рентгенвидикона сканирует последовательно поверхность фотокатода, на котором под влиянием прошедшего излучения устанавливается определенное распределение электрического потенциала. Полученный в результате электрический сигнал передается по телевизионному каналу, модулирует луч телевизионного при-  [c.135]

Радиометрический метод (рис. 80) заключается в просвечивании контролируемого объекта узким коллимированным пучком тормозного или гамма-излучения, регистрации прошедшего излучения детектором, преобразовании его в электрический сигнал, который через усилитель поступает на регистрирующее устройство — миллиамперметр, осциллограф, самопишущий прибор, счетчик импульсов и т. п. В качестве детекторов используют сцинтилляционные, полупроводниковые, газоразрядные счетчики или ионизационные камеры. Преобразование сигнала от детектора производится, например, с помощью фотоэлектронного умножителя. Изменение интенсивности прошедшего через дефектное место излучения вызывает отклонение стрелки прибора, кривой на осциллографе или самописце и пр. Рис. 80. Схема радиометричес- Обычно контролируемое из-кого метода контроля делие перемешают в зоне  [c.136]

При радиометрическом контроле сварных соединений нашли применение два основных метода среднетоковый и импульсный. В основном различие между ними определяется способом регистрации прошедшего излучения и электронной обработки дефектоскопической информации.  [c.38]

Из чисда радиационных методов (см, табл. 1.2) для обнаружения и измерения внутренних дефектов в изделии используются методы прошедшего излучейия. При прохождений через контролируе ое изделие ионизирующее излучение ослабляется за счет его поглощения и рассеяния в материале изделия. Степень ослабления зависит от толщины изделия, химического состава И структуры материала, наличия в нем газовых полостей, сульфидных раскатов и других инородных включений. В результате прохождения ионизирующего излучения через контролируемое изделие детектором фиксируется распределение интенсивности дошедшего до него потока излучения, называемого радиационным изображением изделия. Наличие и ха-ракгеристики дефектов определяют по плотности полученного радиационного изображения. Равномерная интенсивность излучения, дошедшего до детектора, свидетельствует об отсутствии дефектов. Уменьшение плотности радиационного изображения соответствует увеличению толщины контролируемого изделия, например в зоне сварных швов или брызг (капелек) металла от сварок. В свою очередь увеличение плотности соответствует участкам изделий с меньшей радиационной толщиной, имеющих дефекты. Схема радиационного контроля методом прошедшего излучения приведена на рис. 6.4.  [c.92]

Изотопные приборы, основанные на использовании проникающей способности у- (реже р-) излучения, в настоящее время занимают более половины всех поставок радиационной техники. В основу почти всех этих приборов положен один и тот же простой принцип счет в детекторе меняется, если меняется толщина или вид материала между детектором и источником. На основе этого принципа конструируются и выпускаются различные толщиномеры, плотномеры, уровнемеры, счетчики предметов, 7-дефектоскопы и многие другие приборы. На этом принципе основаны многочисленные у-релейные устройства, автоматически контролирующие и регулирующие ход производственных процессов. Бета-излучение сильно поглощается веществом. Из-за непрерывности (З-спектра (см. гл. VI, 4, п. 4) и из-за искривления пути электронов в веществе (см. гл. Vni, 3) разные электроны источника имеют разный пробег, от нулевого до некоторого максимального. Количество прошедших через вещество электронов довольно резко зависит от толщины слоя. Поэтому р-толщиномеры имеют довольно хорошую точность, но могут измерять лишь небольшие толщины. Такие толщиномеры применяются, например, для контроля за толщиной производимой фотопленки. Пленка проходит между источником и детектором. Малейшее отклонение толщины от стандартной изменяет число поглощаемых пленкой электронов, т. е. меняет скорость счета детектора. Для больших толщин используются у-толщино-меры. Интересной разновидностью прибора такого типа является односторонний у-толщиномер, измеряющий толщину определенного материала по величине у-излучения, рассеянного назад. Такие толщиномеры применяют для контроля размеров труб на Московском, нефтезаводе. Приборы, основанные на проникающей способности  [c.683]

В последнее время предложена схема лазерного сканирующего микроскопа — зонда, в котором регистрируется не прошедшее через объект или отраженное от него излучение лазера, а возбужденный им в полупроводнике фотоэлектрический эффект (фотоответ). На экране кинескопа в этом случае наблюдают изсбражения, яркость отдельных точек которого пропорциональна величине фотоответов полупроводника на световое воздействие в соответствующих зонах. Метод перспективен для контроля интегральных схем.  [c.96]

В затемненном помещении, полностью исключающем постороннюю подсветку, под ультрафиолетовым облучателем устанавливают датчик люксметра на расстоянии D, равном расстоянию от облучателя до объекта контроля. Датчик предварительно покрывают светофильтром из стекла марки ЖС4. Не допускается попадание на фотоэлемент датчика ультрафиолетового излучения, не прошедшего светофильтр. Плоскость датчика должна быть перпендикулярна к оси ноюка излучения.  [c.174]

Электрорадиографические пластины, применяемые при контроле методом переноса изображения, реагируют на прошедшие через объект рентгеновское или 7-излучение в виде измерения параметров электрического поля, нанесенного на их поверхность таким образом, что остаточный заряд, образующий скрытое электростатическое изображение внутренней макрострук-> туры контролируемого объекта, про  [c.342]


Аппаратура для контроля теневым методом проще эхо-дефек-тоскопа (рис. 2.12). Синхронизатор I, генератор радиоимпульсов 2, излучатель 3, приемник 5, усилитель 6, временной селектор 7 и пороговый индикатор 8 (регистратор с амплитудным дискриминатором) выполняют те же функции, что и в эхо-дефекто-скопе. Импульсные приборы используют гораздо чаш,е, чем приборы с непрерывным излучением, так как, применяя достаточно короткие импульсы (см. подразд. 3.4), легче избавиться от помех, связанных с изменением амплитуды прошедшего сигнала в результате интерференционных явлений (например установлением стоячих волн) в изделии 4 и слоях жидкости. Стробируя время прихода сквозного сигнала за счет связи синхронизатора и временного селектора, уменьшают действие внешних электрических шумов.  [c.118]

В Ленинградском физико-техническом институте АН СССР в 1952 г. под руководством профессора С. В. Стародубцева разработан бесконтактный -(-лучевой плотномер для непрерывного контроля плотности (консистенции) пульпы в пульпопроводах землесосных снарядов. Измерение плотности пульпы основано на законе поглощения ( лучей веществом. Интенсивность прошедшего через пульпопровод j-излучения измеряется галогенными счетчиками с усилительпо-интегрирующей схемой. Принципиальная электрическая схема прибора приведена на рис. 1. Внешний вид прибора показан па рис. 2 и 3. Конструкция прибора герметична.  [c.184]

На рис. 2 показаны кривые контроля сварного шва ионизационным дефектоскопом ИД-3 (дефектограмма сварного шва, имеющего ненровар). Отклонение шлейфа пропорционально толщине металла, находящегося менаду источником излучения и индикатором, поэтому на фотобумаге записан поперечны профиль сварного шва и околошовной зоны. Наличие дефекта в виде газовой поры, шлакового включения, непровара и т. п. дает на дефектограмме резкую впадину, соответствующую резкому увеличению интенсивности излучения, прошедшего через дефектный участок шва.  [c.321]

Наблюдение картины неоднородностей контролируемого изделия на телевизионном экране при рентгенотелевизионном методе осуществляется за счет преобразования рентгеновского излучения, прошедшего контролируемое изделие, в видимое в специальных электроннооптических преобразователях (рентгеновндиконах, сцин-тилляционных экранах и т.д.). Схема установки для рентгенотелевизионного контроля представлена на рис. 5.50.  [c.530]

Метод радиационной интроскопии (радиоскопии) заключается в приеме и преобразовании прошедшего через просвечиваемое сварное соединение ионизирующего излучения и скрытого в нем радиационного изображения в светотеневое, усилении и передаче этой инофрма-ции для визуального анализа либо сразу же на экран, либо на расстояние с помощью оптических и телевизионных систем. Радиационная интроскопия имеет определенные преимущества по сравнению с радиографией, поскольку дает возмо.жность судить о наличии дефектов сразу же в момент просвечивания, исследовать объект под различными углами, что повышает выявляемость дефектов, позволяет производить контроль в условиях поточного производства и повышает производительность контроля в 3...5 раз.  [c.132]

Всевозрастающая иятвнсивяость строительства и сокращение сроков его осуществления требуют высокопроизводительных методов контроля и максимального сокращения времени от момента выполнения контроля до получения его результатов. К сожалению, гамма- и рентгеподефектоскопия являются пока дорогими и малопроизводительными методами. Например, для регистрации гамма- и рентгенолучей, прошедших через контролируемое изделие, применяется фотографический метод, основанный на зависимости почернения галоидно-серебряных фотопленок от интенсивности излучения. Для визуализации пленок используется химический метод, который включает проявление, промывку, закрепление, вторичную промывку и сушку пленок. Для выполнения этих операций необходимы фотолаборатория и набор дорогостоящих химических реактивов и фотоматериалов, причем получение готового рентгено- или гамма-снимков занимает несколько часов.  [c.266]

Радиометрический метод (ГОСТ20426-82) радиационного контроля получил ограниченное распространение. Сущность метода заключается в регистрации интенсивности прошедшего через объект контроля рентгеновского или гамма-излучения, которое с помощью коллимированного пучка просматривает все участки контролируемого объекта.  [c.219]

Электронно-дифференциальный метод гамма-дефектоскопии основан на использовании двух счетчиков. Один из них ставится для измерения интенсивности прямого излучения, второй — излучения, прошедшего через испытуемый образец. Выходные сигналы с обоих счетчиков для материала без дефектов могут быть уравнены и в таком виде, подаются на дифференциальную электронную схему. Ерли перемещать образец относительно источника излучения, то при наличии трещины или другого дефекта результирующий сигнал в этом месте резко возрастает. Дифференциальный электронный гамма-дефектоскоп позволяет при узкой щели коллиматора обнаруживать мелкие дефекты в материале и обеспечивает скоростной и объективный контроль материалов.  [c.289]

Рентгенотелевизионные интроскопы (типа РИ-ЮТ и РИ-20Т) предназначены для дистанционного визуального обнаружения, фоторегистрации и фиксации расположения внутренних дефектов в сварных соединениях, отливках и других изделиях. В процессе контроля изделие перемещают с определенной скоростью относительно экрана входного блока интроскопа, преобразующего прошедшее через контролируемое изделие рентгеновское излучение в оптическое изображение. Это изображение передается телевизионной системой для воспроизведения его на экране кинескопа.  [c.752]

Ксерорадиография. Этот метод контроля представляет собой процесс получения изображения на поверхности пластины, электрические свойства которой изменяются в соответствии с энергией воспринятого рентгеновского или у-излучения. Если зарядить такую пластину электрическим зарядом до определенного уровня, а затем подвергнуть ионизационному облучению, то величина остаточного заряда на любом участке пластины будет однозначно связана с интенсивностью излучения, падающего на данный участок. При этом остаточный заряд будет тем меньше, чем больше интенсивность излучения. Следовательно, в тех местах пластины, на которые попало излучение, прошедшее через какой-либо дефект (непровар, пора, раковина), остаточный заряд будет меньше, чем в других местах пластины. Таким образом, в пластине образуется скрытое изображение, которое проявляют при помощи различных красящих мелкоразмолотых порошков на основе талька, оксида цинка, мела. Порошок предварительно электризуют и опыляют им пластину, при этом скрытое изображение превращается в видимое. Затем на пластину накладывают обычную бумагу, на которой фиксируется полученное изображение объекта. Весь процесс проявления занимает 30...40 с. Пластина состоит из подложки (алюминий, латунь, стальная фольга) поверху которой нанесен слой полупроводника (селен, оксид цин-  [c.274]


Смотреть страницы где упоминается термин Контроль прошедшим излучением : [c.10]    [c.348]    [c.91]    [c.346]    [c.272]   
Смотреть главы в:

Основы технической диагностики нефтегазового оборудования  -> Контроль прошедшим излучением



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте