Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детекторы сцинтилляционные

В радиографическом и радиоскопическом методах автоматическая обработка результатов контроля до настоящего времени встречает некоторые трудности. Этих недостатков лишен радиометрический метод контроля [1, 52]. Радиометрический метод основан на просвечивании исследуемых объектов узким коллимированным пучком излучения и регистрации прошедшего излучения высокоэффективными детекторами сцинтилляционными кристаллами, газоразрядными счетчиками и др. (рис. 60).  [c.130]


К.Р—камера, в которой происходят распады /С-мезонов, попадающих в зону действия детекторов. Детекторами продуктов распада являются два телескопа, каждый из которых состоит из двух искровых камер И.К, магнита М, сцинтилляционного счетчика С.С и черенковского счетчика Ч.С. Такой детектор позволяет определять импульс заряженного продукта распада нейтрального /С-мезона как по направлению, так и по величине.  [c.210]

Опыты по регистрации электронов 2р-распада очень сложны из-за исключительно малой вероятности процесса и трудностей борьбы с фоном. Для уменьшения фона опыты ставятся на большой глубине под землей, а детектор дополнительно защищается комбинированным фильтром из разных веществ и пластическим сцинтилляционным счетчиком, включенным в схему антисовпадений.  [c.240]

Детектирование излучений основывается на различных принципах ионизации газов (ионизационные камеры и газоразрядные счетчики), ионизации твердых тел (кристаллические счетчики), флуоресценции (сцинтилляционные счетчики), радиофотолюминесценции, радиотермолюминесценции, фотохимических реакциях, тепловых взаимодействиях и т. д. Из перечисленных методов детектирования излучений в экспериментальной практике используют главным образом ионизационные камеры, газоразрядные и сцинтилляционные счетчики, перспективными являются кристаллические полупроводниковые детекторы.  [c.245]

ПТУ-89, ДГС-1, РД-ЮР, НИВ-2, Нейтрон-3). Временная разрешающая способность метода при использовании в качестве детекторов излучения сцинтилляционных и полупроводниковых счетчиков чрезвычайно высока и достигает долей микросекунд. Это позволяет использовать проникающее излучение для диагностики быстро протекающих и нестационарных процессов.  [c.247]

В качестве детектора излучения при-меняют ионизационные камеры, газовые и сцинтилляционные счетчики, полупроводниковые детекторы. Мощность сигналов детекторов мала, поэтому для усиления сигналов используют соответствующую усилительную аппаратуру.  [c.375]

При контроле изделий большой толщины заметно возрастает влияние погрешностей, обусловленных квантовым характером излучения и наличием рассеянного излучения. В этом случае наиболее целесообразно проводить контроль компенсационным методом, при котором один сцинтилляционный детектор расположен за контролируемым изделием, а второй — непосредственно в пучке излучения перед контролируемым изделием (рис. 5). В дифференциальном методе контроля с применением вычитающей схемы флюктуация регистрируемого сигнала линейно зависит от флюктуации начальной интен-  [c.377]


Анализ более сложных радиоизотопных композиций осуществляют с помощью полупроводниковых У спектрометров, несколько уступающих сцинтилляционным по чувствительности, однако значительно (на порядок) превосходящих их по энергетическому разрешению. При необходимости чувствительность можно повысить, используя дополнительный защитный сцинтиллятор, включенный с анализирующим Се(и)-детектором на антисовпадениях.  [c.212]

Работу сцинтилляционного детектора можно описать по следующей схеме. Излучение, прошедшее через коллимационный канал и защиту, попадает на сцинтилляционный детектор (рис. 78, а). При этом у-кванты могут или пройти через  [c.131]

Наиболее целесообразные области применения радио(мет-рической гамма-дефектоскопии определяются достоинствами и недостатками, которыми обладает этот метод. К основным его достоинствам относится высокая эффективность регистрации излучения. Для сцинтилляционного детектора эта эффективность почти на два порядка выше, чем у лучших радиографических пленок. Другим достоинством является возможность проведения контроля без контакта с изделием. Благодаря этому становится доступным контроль движущихся и нагретых до высоких температур изделий и материалов. Для расширения температурного диапазона блок детектирования можно поместить в охлаждаемую рубашку, что незначительно снизит чувствительность контроля. Радиометрический метод по сравнению с другими менее чувствителен к вибрациям контролируемого изделия относительно источника и детектора. В особенности это справедливо, когда вклад этих вибраций в регистрируемый сигнал имеет частотный спектр, мало перекрывающийся со спектром полезного сигнала.  [c.164]

В качестве детектора излучения нами был выбран сцинтилляционный счетчик, обладающий, как известно, высокой эффективностью регистра-  [c.161]

Б. И. Верховским разработан [5] метод, позволяющий осуществлять практически непрерывную автоматическую калибровку измерительного тракта непосредственно в процессе контроля. Принципиальная схема измерения приведена на фиг. 4. На фосфор 1 сцинтилляционного счетчика одновременно воздействуют измеряемый и калибровочный потоки излучения. Калибровочный поток прерывается с частотой / при помощи модулятора 2. При действии на фосфор обоих потоков возникающий анодный ток фотоумножителя 3 (ФЭУ) содержит как постоянную, так и переменную составляющие. Постоянная составляющая тока пропорциональна величине потока и может быть измерена специальным устройством 4 (в простейшем случае это обычный микроамперметр). Переменная составляющая тока i селективным усилителем усиления ki) и преобразуется в постоянное напряжение U при помощи детектора 6 (коэффициент преобразования fej)- Так как интенсивность калибровочного потока в процессе измерения не изменяется, то возникающие изменения U свидетельствуют о непостоянстве параметров аппаратуры. Напряжение с выхода детектора подается на управляющую лампу выпрямителя 7, питающего ФЭУ, таким образом, что при увеличении и коэффициент усиления ФЭУ начинает падать, и наоборот. Калибрующее действие схемы заключается в автоматической  [c.319]

Цифровая радиоскопия с использованием дискретных детекторов. Детекторы. Современные линейные матрицы радиационных преобразователей используют такие детекторы, как газовые ионизационные камеры, подключенные к малошумящим усилителям, сцин-тилляционные кристаллы, сочлененные с ФЭУ или фотодиодом. Важными характеристиками таких детекторов являются низкий уровень собственного шума и крутой фронт выходного сигнала (без большого послесвечения при использовании твердотельных кристаллов). Сцин-тилляционные кристаллы должны иметь достаточно большой световой выход, согласованный по спектру с входом светового детектора. С учетом ограничений по габаритам и стоимости кремниевые фотодиоды являются наиболее часто используемыми в качестве световых детекторов. Сцинтилляционные кристаллы, сочлененные с такими световыми детекторами, должны иметь световы-ход со спектром, смещенным в красную сторону.  [c.98]

РЕНТГЕНОВСКИЕ СПЕКТРЫ, спектры испускания и поглощения рентг. излучения, т. е. эл.-магн. излучения в области длин волн от 10 до 10 A. Для исследования Р. с. применяют спектрометры с диспергирующим элементом (кристаллом-анализатором или дифракц. решёткой) либо без дифракц, аппаратуру, состоящую из детектора (сцинтилляционного, газового пропорционального или полупроводникового счётчика) и амплитудного анализатора импульсов (см. Спектральная аппаратура рентгеновская).  [c.638]


Установка состояла из 50 быстродействующих детекторов — черепковских и сцинтилляционных счетчиков и паносекундной электроники. Исключительно высокая точность и надежность  [c.228]

Преимущества сцинтилляционных счетчиков таковы. Во-первых, у них высока эффективность регистрации, равная почти 100% для заряженных частиц и 30% для у-квантов. Во-вторых, у сцинтилляционных счетчиков очень мало разрешающее время, предел которого определяется длительностью люминесцентной вспышки. Продолжительность вспышки зависит от вещества сцинтиллятора. Для неорганических кристаллов, таких как Nal, это время имеет порядок 10" с, для органических кристаллов (антрацен, нафталин) — примерно 10" с, для пластических сцинтилляторов доходит до 10"° с. Поэтому неорганические и особенно пластические сцинтилляторы особенно хороши там, где требуется высокое разрешение по времени. Третьим преимуществом люминесцентного счетчика является возможность измерения энергии как заряженных частиц, так и у-квантов. Для измерения энергии более пригодны неорганические кристаллы, так как в органических кристаллах и пластиках плохо выполняется линейность зависимости интенсивности вспышки от энергии первичной частицы. Но даже и в счетчиках с неорганическими кристаллами энергия измеряется с точностью порядка 10% в области энергий от сотен кэВ и выше и с точностью порядка 50% в области десятков кэВ. Сцинтилляционным счетчиком можно измерять не только энергию, но и скорость тяжелых заряженных частиц с энергиями в области десятков МэВ. Для этого используется тонкий кристалл. В таком кристалле измеряется не вся энергия частицы, а лишь потеря энергии на расстоянии толщины кристалла, т. е. —dE/dx. А это и есть измерение скорости (см. гл. VIII, 2, формула (8.24)). Если же на пути частиц поставить комбинацию из тонкого и толстого кристаллов, то можно измерить энергию и скорость, т. е. энергию и массу. Таким путем можно легко отделять, например, протоны от дейтронов, измеряя в то же время энергии и тех, и других частиц. Как недостаток сцинтилляционных счетчиков отметим то, что с ними труднее работать, чем с газоразрядными. Например, кристалл Nal очень гигроскопичен и боится больших потоков света. Поэтому этот кристалл приходится тщательно герметизировать и экранировать от наружного освещения. Сцин-тилляционный счетчик сейчас является одним из основных типов детекторов как в самой ядерной физике, так и в ее технических приложениях. В сцинтилляционных счетчиках в качестве рабочего вещества иногда используются жидкие прозрачные сцинтилляторы, которые могут иметь неограниченно большой эффективный объем (вырастить большой кристалл трудно).  [c.501]

Метод протонов отдачи основан на том кинематическом факте, что нейтрон, сталкиваясь с протоном, передает ему энергию и импульс. По энергии и импульсу протона часто удается сделать заключение не только о наличии нейтрона, но и о его энергии. Протоны отдачи регистрируются различными способами ионизационными камерами, пропорциональными счетчиками, сцинтилляционными счетчиками, фотопластинками, следовыми камерами. Водород либо просто содержится в веществе детектора (например, водорода много в фотоэмульсии), либо вводится в рабочий объем детектора в виде водородосодержащих газов или покрытий. Метод протонов отдачи применим при всех энергиях, начиная с мегаэлектронвольтной области. Для очень высоких энергий этот метод — практически единственный. Достоинством метода протонов отдачи являются универсальность и возможность измерять энергию нейтронов. Его главный недостаток — низкая эффективность регистрации (из-за малости сечения рассеяния п — р при высоких энергиях).  [c.521]

Широкое распространение в бетатрон-ной и рентгеновской дефектоскопии получили схемы, основанные на измерении разности усредненных с помощью диодов и интегрирующих звеньев импульсов первого и второго сцинтилля-ционных детекторов (рис. 7). Существенным недостатком этих схем является необходимость выбора параметров интегрирующих звеньев строго одинаковыми. В противном случае при нестабильно работающем ускорителе точность определения степени дефектности контролируемого изделия не люжет быть высокой. Этот недостаток устраняется при сравнении амплитуд импульсов сцинтилляционных детекторов, пропорциональных дозе в импульсе излучения с их предварительным преобразованием, которое осуществляется с помощью зарядного устройства и ключа (рис. 8). Управление ключом производят таким образом, чтобы длительность получаемых импульсов равнялась половине периода следования импульсов излучения. Благодаря предварительному преобразованию формы импульсов сцинтилляционных детекторов повышаются быстродействие и помехоустойчивость дефектоскопов как при вычитающей схеме, так и при схеме измерения отношения.  [c.378]

Сцинтилляционные детекторы с фотоумножителями (ФЭУ) имеют высокую эффективность поглощения (т)у > 0,9) и большую чувствительность в связи с усилением фототока в Ю - -10 раз непосредственно ФЭУ. В качестве сцинтилляторов применяют sJ(Tl), sJ(Na), BijGe, О , aF. Среди них германат висмута обладает наилучшей стабильностью к воздействию внешних условий и эффективностью ослабления, но имеет конверсионную эффективность -10 % от Nal, что требует применения высокочувствительных ФЭУ.  [c.468]

Указанный метод реализуется иа специальной установке (рис. 12а) (аппарат РУП-120, применяемый для дефектоскопии сварных соединений). Максимальное напряжение рентгеновской трубки — 120 кВ. Указанный аппарат использован для получения. достаточно жесткого излучения, способного проникать через стенки криокамеры. За образцом устанавливается универсальный сцинтилляционный датчик УСД-1. Детектором служит кристалл йодистого натрия (с добавкой таллия) цилиндрической формы, имеющий диаметр 40 и высоту 40 мм. К датчику УСД-1 подведено высокое напряжение от стабилизированного высоковольтного источника. Информация от датчика в виде цифрового кода подается на пересчетное устройство с дискриминатором, а интегратор преобразует его в непрерывный сигнал, поступающий на вход оси абсцисс двухкоординатного самописца. Возможно получение дискретной информации при помощи механических блоков записи типа БЗ-15 или перфораторов. Применение последних или других дискретных запоминающих устройств позволяет изучать разрушение в условиях высоких скоростей деформирования и непосредственно вводить информацию в ЭЦВМ для ее дальнейшей обработки.  [c.33]


Аппарат Магистраль-1 дополнительно укомплектован двухканальной радиометрической системой наведения и реперным контейнером. Он предназначен для использования совместно с автоматизированным самоходным комплексом типа АКП (см. рис. 55, б). Ориентация рабочего источника излучения относительно, сварного шва производится с помощью реперного контейнера, снабженного узкой щелью и заряженного источником излучения с МЭД у-излучения 6- 10 Р/с на 1 м. Сцинтилляционные детекторы устанавливаются на самоходном комплексе в коллиматорах с узкими щелями. Система автоматики и наведения обеспечивает ориентацию рабочего источника излучения относительно контролируемого шва с погрешностью 2% диаметра трубы, а также выполнение следующей программы работ по командам от источника, находящегося в реперном контейнере замедление скорости движения самоходного комплекса и его остановку у шва (реперный контейнер установлен в зоне шва с открытой щелью) задержку времени, необходимую для удаления оператора из зоны контроля, и выдержку времени просвечивания (щель реперного контейнера закрыта) движение самоходного комплекса вперед или назад (реперный контейнер с открытой щелью переносится оператором от проконтролированного шва в сторону необходимого направления движения). МЭД излучения реперного источника при открытой щели контейнера меньше предельно допустимой МЭД, установленной санитарными правилами. Помимо указанных команд блок управления обеспечивает звуковую сигнализацию о движении комплекса, прекращении экспонирования, ограничении перемещения как в случае недопз стимого уменьшения емкости питающих аккумуляторов, так и при отсутствии команд от реперного источника, а также термостабилизацию узлов комплекса при пониженных температурах.  [c.95]

Рис. 78. Сцинтилляционный детектор (а) и спектр сигнала со сцинтилля-ционного детектора (б) / фотопик 2 — комптоновская часть при регистрации арямого пучка 3 — компто-новская часть спектра излучения, прошедшего через контролируемое изделие Рис. 78. Сцинтилляционный детектор (а) и <a href="/info/215582">спектр сигнала</a> со сцинтилля-ционного детектора (б) / фотопик 2 — комптоновская часть при регистрации арямого пучка 3 — компто-новская часть <a href="/info/22667">спектра излучения</a>, прошедшего через контролируемое изделие
Если рассмотреть распределение импульсов напряжения для ФЭУ, во внешнюю цепь которого включено нагрузочное сопротивление (ом. рис. 78, с), то получим спектр выходного сигнала сцинтилляционного детектора (см. рис. 78, б). Вся площадь под кривой распределения выходного сигнала делится на комптоновскую часть и фотопик (пик полного поглощения).  [c.132]

Если первичное излучение немоноэнергетично, то спектр сигнала со сцинтилляционного детектора усложняется по сравнению с рассмотренным. Однако и тогда он поддается анализу путем выделения составляющих, связанных с отдельными линиями в спектре первичного излучения.  [c.133]

Установка включает в себя радиационную головку с источником °Со активностью 800 Ки, заключенную в теплозащитный экран. Сечение выходящего пучка автоматически регулируется в зависимости от ширины прокатываемого блюма. Регулировка достигается за счет ступенчатого перемещения поглощающих шторок коллиматора с помощью автоиомного привода. Блок приемников излучения, помещенный в водоохлаждаемый кожух, содержит десять сцинтилляционных детекторов с размерами кристалла 40x50 мм. Такая мозаика детекторов позволяет регистрировать поток излучения, прошедший через осевую зону шириной до 200 мм.  [c.153]

Эта разработка могла бы найти применение, например, в химической промышленности при контроле крупногабаритных заготовок из пластмасс или при контроле огнеупорных материалов, проверке футеровки обжиговых печей и т. п. Одноканальная радиометрическая аппаратура ДГС-1 и девятиканальная ДГС-9 [55] предназначены для контроля сплошности изделий простой формы методом просвечивания с применением в качестве источника излучения °Со активностью 32—64 Ки. В аппаратуре ДГС-1 и в каждом из каналов аппаратуры ДГС-9 определение плотности потока нерассеянного излучения на контролируемом участке изделия осуществляют путем измерения средней частоты следования электрических импульсов, поступающих со сцинтилляционного детектора, амплитуда которых превышает установленный уровень дискриминации. Для этого используется интенсиметр с 7 С-ячей-кой. К выходу интенсиметра подключается самопишущий прибор. Структурная схема одноканальной установки ДГС-1 показана на рис. 88. Основными частями ее являются стойка  [c.154]

Особую группу составляют Д., в к-рых используется свет, излучаемый при прохождении заряж. частиц через вещество. Это — сцинтилляционный детектор, черепковский счётчик и Д. на переходном излучении. Основные элементы сцинтилляц. Д.— сцинтиллятор, в к-ром проходящая заряж. частица вызывает световую вспышку, и фотоэлектронный умножитель (ФЭУ), регистрирующий вспышку. Высокое времепибе разре-  [c.589]

Рис. 1, Схема магнитного спектрометра, используемого в экспериментах ка ускорителях l — магнит 2 — трековые детекторы, регистрирующие траектории (тре1Ш) частиц и иагнитпом поле пропорциональные и дрейфовые камеры, иснровые проволочные камеры) З — годоскопы сцинтилляционных счётчиков 4 — многоканальный черенковский газовый детектор для идентификации вторичных частиц 5 — спектрометр для регистрации электронов и v-квантов в — мюонныЯ детектор (система сцинтилляционных 3 и трековых 2 детекторов, прослоенных Fe) 7 — мишень 8 — детекторы, включённые в схему совпадения, регистрирующую первичные частицы. Рис. 1, Схема <a href="/info/246694">магнитного спектрометра</a>, используемого в экспериментах ка ускорителях l — магнит 2 — трековые детекторы, регистрирующие траектории (тре1Ш) частиц и иагнитпом поле пропорциональные и дрейфовые камеры, иснровые проволочные камеры) З — годоскопы сцинтилляционных счётчиков 4 — многоканальный черенковский <a href="/info/383892">газовый детектор</a> для идентификации вторичных частиц 5 — спектрометр для <a href="/info/241095">регистрации электронов</a> и v-квантов в — мюонныЯ детектор (система сцинтилляционных 3 и трековых 2 детекторов, прослоенных Fe) 7 — мишень 8 — детекторы, включённые в <a href="/info/13814">схему совпадения</a>, регистрирующую первичные частицы.
Для регистрации фотонов РПИ пригоден любой газоразрядный детектор частиц с тонким входным окном, содержащий тяжёлый инертный газ (Хе, Кг, Ат), или твердотельный детектор Чаще всего применяют пропорциональную камеру или дрейфовую камеру (изредка стримерную камеру), а также сцинтилляционные детекторы и полупроводниковые детекторы. При этом возникает необходимость выделять сигнал РПИ на фоне ионизации, производимой быстрой заряж. частицей в том же детекторе. Из-за больших флуктуаций, характерных для обоих процессов, прямое вычитание вклада ионизации из суммарного сигнала невозможно. Для решения этой задачи пользуются неск. методами. 1) Отклонение частицы в магн. поле позволяет прост-  [c.578]

По геометрии измерений выделяют т н. 4я-геомет-рию, промежуточную и измерения в малом телесном угле. В 4я-геометрии детектор окружает источник со всех сторон. Это осуществляется при помощи газоразрядных т. н. 4я-счётчиков или наполнением счётчика активным газом. Близкая к 4я геометрия осуществляется в жидкостных сцинтилляционных детекторах, ионизационных камерах, полупроводниковых и др. детекторах с каналами ( колодцами ) для размещения источников. В случае низкой массовой активности источники размещают непосредственно на детекторе. Для снижения минимально детектируемой массовой активности детектор окружают контейнером с препаратом (Маринелли, 1950).  [c.223]

По используемому эффекту методы измерения активности подразделяются на ионизационные, газоразрядные, сцинтилляционные, калориметрич., масс-спектрометрич., фотометрич. и др. Название приборов содержит указание на метод измерения, геометрию и вид излучения, напр, 4л-Х-счётчик высокого давления (X — рентген), полупроводниковый детектор Се(Б1), сцинтилляционный детектор Ха1(Т1) и т. д.  [c.223]


Для сравнения детекторов используют относит, эффективность — отношение эффективностей регистрации данного детектора и сцинтилляционного детектора 1Ма1(Т1) диам. и высотой 76,2 мм в пике полного погл< -щения при энергии у-излучения = 1332 кэВ (источник — Со) или 661,7 кэВ (1 С5). Напр., для полупроводникового детектора Ое(Ы) с чувствит. объёмом 130 см относит, эф ктивность для фотонов с = = 1332 кэВ порядка 25%. Его эяергетич. разрешение при этом в 50 раз лучше, чем у Па1(Т1).  [c.224]

Энергетическое разрешение. Мерой разрешающей способности сиектрометрич. установки является полная ширина пика на половине высоты в распределении импульсов по энергии. Для сцинтилляционных детекторов её принято выражать величиной (%), для полупроводниковых — Д . Для рентгеновского и у-излучения приводят Д/ для энергий = 5,9 кэВ, 122 кэВ и 1332 кэВ.  [c.224]


Смотреть страницы где упоминается термин Детекторы сцинтилляционные : [c.642]    [c.242]    [c.424]    [c.378]    [c.390]    [c.95]    [c.130]    [c.155]    [c.283]    [c.296]    [c.412]    [c.122]    [c.425]    [c.626]    [c.582]    [c.352]    [c.364]    [c.570]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.248 ]



ПОИСК



Детектор



© 2025 Mash-xxl.info Реклама на сайте