Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача о неоднородном упругом стержне

Задача о неоднородном упругом стержне  [c.91]

Такой же критерий (соотношение между размером неоднородностей и длиной волны) определяет роль макроскопических неоднородностей. Если сплошное тело (помимо неоднородностей, обусловленных атомной структурой, которые можно не учитывать) макроскопически неоднородно, например, упругий стержень составлен из сильно прижатых друг к другу чередующихся одинаковых латунных и алюминиевых цилиндров ), то для нормальных колебаний, соответствующих волнам, длина которых значительно превышает высоту одного цилиндра, стержень можно рассматривать как однородный, обладающий средней плотностью и средней упругостью. При расчете же нормальных колебаний, длина волны которых сравнима с высотой цилиндра, необходимо учитывать неоднородность стержня. При наличии неоднородностей решение задачи о колебаниях сплошных систем настолько усложняется, что удается рассмотреть только самые простые случаи, например системы с малой неоднородностью или очень плавно меняющимися вдоль длины системы свойствами.  [c.697]


В настоящей главе изложены методы исследования на устойчивость неоднородно-стареющих вязко-упругих стержней при различных предположениях о способах закрепления концов стержня и способах его нагружения и установлены условия устойчивости. Устойчивость изучена в нескольких принципиально отличных постановках. Принятое ниже определение устойчивости на бесконечном интервале времени соответствует классическому определению устойчивости движения динамических систем по Ляпунову. Для ряда ситуаций получены выражения критической силы потери устойчивости, сформулированные непосредственно в терминах параметров рассматриваемых задач. Представляет интерес поведение стержня на конечном интервале времени. Приведены постановки задач устойчивости на конечном интервале времени, исходящие из определений устойчивости движения динамических систем по Четаеву [1, 513]. Одна из постановок задачи устойчивости на конечном интервале времени состоит в определении ограничений на начальную погибь, при выполнении которых определяемый ею прогиб не превосходит заданного критического значения. Другая постановка задачи может быть связана с определением функционала, представляющего собой первый момент времени, именуемый критическим, к гда максимальная величина прогиба впервые достигает заданного значения.  [c.230]

К другому важному классу простейших задач динамики вязко-упругих сред относятся задачи о распространении плоских одномерных вязкоупругих волн в неоднородных средах (полупространстве) или в неоднородных стержнях переменного сечения [33J.  [c.56]

Приведем постановку задачи о выпучивании полубесконечного упругого стержня при продольном ударе телом, движущимся с постоянной скоростью V. В этом случае продольная волна сжимающих напряжений и выпучивание с учетом начального прогиба Н о( ). деформации поперечного сдвига и инерции вращения, а также неоднородности сжимающих усилий описываются линеаризованной по прогибам и системой уравнений  [c.513]

Прежде чем переходить к анализу полученного решения, необ ходимо уточнить постановку задачи о распространении волн в сто хаотической упругой среде. Классическое волновое уравнение (8.1) описывающее продольные волны в стержне постоянного сечения можно использовать для формулировки стохастической задачи если плотность материала р — случайная функция координаты х а модуль упругости Е — постоянная величина. Однако в мате риале, обладающем пространственной неоднородностью, оба параметра р и Е переменны. Уравнение движения при продольном растяжении (сжатии) имеет вид  [c.233]


В разделах 10.1, 10.2 анализировалась задача о кручении стержня из изотропного и однородного упругого материала. Сейчас рассмотрим влияние неоднородности материала.  [c.209]

В работах [36, 89, 95] исследована задача о распространении волн нагружения и разгрузки в среде с произвольной неоднородностью как в упругой, так и в пластической областях. Задача сведена к интегро-дифференциальным уравнениям, которые решаются методом последовательных приближений. Рассмотрен, кроме того, ряд задач о распространении волн в стержнях с переменным поперечным сечением (например, [129]).  [c.92]

Каждое из решений zj(z) j = 1,..., 4), удовлетворяющее этим начальным условиям, есть столбец матрицы K(z), поэтому матрица K(z) при z = О является единичной. Частное решение неоднородного уравнения (4.21) получаем, решая это уравнение при нулевых начальных условиях. Компоненты вектора С(с1, С2, сз, С4) находим из краевых условий (условий закрепления концов стержня). Найти все j из краевых условий при Z = О нельзя. В этом основная особенность задач статики (и динамики) упругих систем. В теоретической механике (в разделе динамика) все начальные условия задают в начальный момент времени (задача Коши). Поэтому эти задачи часто называют одноточечными краевыми, а задачи статики и динамики упругих систем - двухточечными краевыми.  [c.197]

Вопросам распространения продольных плоских волн напряжений в упруго/вязкопластической среде было посвящено много работ, среди них [54, 63, 65, 77, 91, 124, 140, 221]. Эти работы были начаты уже в 1948 г., но их расцвет приходится на 60-е годы. Рассмотрено много задач, связанных с распространением волн в однородных и неоднородных средах, задач об отражении волн от недеформирующихся и деформирующихся преград, о распространении волн в стержнях с переменным сечением и т. д.  [c.127]

В то же время ряд задач механики и автоматического управления сводится к исследованию систем со случайно изменяющимися параметрами, которые находятся под действием детерминированных или случайных[внеш-них возмущений. Здесь можно указать на задачи управления системами, содержащими в качестве звена человека-оператора [74, 75]. В работе [75] описывается структурная схема системы человек—машина.Подчеркивается, что в настоящее время информационные комплексы, автоматические системы контроля и т. д. содержат живое звено — человека-оператора. Эффективность работы системы человек — машина во многом определяется функциональным состоянием последнего. Приводятся значения коэффициентов отличия некоторых функциональных состояний от состояния оперативного покоя оператора и решается статистическая задача обнаружения сигналов состояния внимания и состояния эмоционального напряжения человека. Задачи сопровождения, телеуправления ит. п., связанные с приемом и передачей сигналов, распространяющихся в статистически неоднородной среде, задачи стабилизации и гиростабилизации также сводятся к исследованию систем со случайно изменяющимися параметрами. В качестве примеров из механики можно привести задачу об изгиб- ных колебаниях упругого стержня под действием периодической во времени лоперечной нагрузки и случайной во времени продольной силы, а также задачу о прохождении ротора через критическое число оборотов при ограниченной мопщости [76] и случайных изменениях массы или упругих характеристик системы ротор — опоры .  [c.15]

Сначала на примере неоднородного стержня показывается техника применения методики осреднения к нелинейным краевым задачам. С помощью этой методики задача о стержне решается точно. Затем подробно описывается решение квазистатической задачи неоднородной и анизотропной теории пластичности. Рассматриваются теория эффективного модуля и теория нулевого приближения. Большое место в главе уделяется построению теории малых упруго-пластических деформаций для анизотропной однородной среды. Для такой среды доказываются теорема единственности решения квазистатической задачи в перемещениях и напряжениях, теоремы о минимуме лагранжиана и максимума кастильяниана, теоремы о простом нагружении. Описывается схема экспериментов, необходимых для определения материальных функций исследуемой теории. Показано, как исходя из теории малых упруго-пластических деформаций А. А. Ильюшина для изотропной среды получить методом осреднения соотношения анизотропной теории пластичности.  [c.219]


Представляет интерес задача о кручении неоднородного цилиндрического стержня, составленного из определенного числа N полых цилиндров (трубок), соединенных жестко по поверхностям контакта путем склейки или спайки (рис. 92). 1У1ы остановимся на случае, когда каждый слой является цилиндрически-анизотропным и однородным и в каждой точке имеется плоскость упругой симметрии, нормальная к геометрической оси (она же является плоскостью упругой симметрии не только для всего стержня, но и для всех слоев) при этом слои соединены  [c.306]


Смотреть страницы где упоминается термин Задача о неоднородном упругом стержне : [c.698]    [c.30]   
Смотреть главы в:

Механика композиционных материалов  -> Задача о неоднородном упругом стержне



ПОИСК



Динамическая задача об упругом неоднородном стержне

Задача об упругом стержне

Задача упругости

Задачи для стержней

Неоднородность

Стержни упругие

Стержни упругие на упругих

Стержни — Стержни упругие



© 2025 Mash-xxl.info Реклама на сайте