Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффект пластичности превращения (ЭПП)

Эффект пластичности превращения (ЭПП)  [c.838]

Наиболее эффективным способом деформирования является деформирование в режиме эффекта пластичности превращения, когда наиболее полно реализуются деформационные возможности фазовых превращений. Однако технологически такой способ трудно осуществим. Реально на практике используется схема активного деформирования при температуре, близкой к Л/ , при которой деформирующие нагрузки минимальны (рис. 25.3, б).  [c.840]

Таким образом, можно с уверенностью утверждать, что в настоящее время не существует теории, удовлетворяющей требованиям практики в части расчета и прогнозирования упругопластических свойств материалов. Этот вопрос приобретает особую остроту в ходе описания поведения кристаллических объектов при сложных траекториях нагружения в пространстве деформаций или напряжений, нестационарных тепловых и силовых воздействиях, проявлении эффектов пластичности превращения или памяти формы, двойниковом канале пластичности текстурированных кристаллов, в условиях радиационного воздействия и т. д.  [c.8]


Деформация, реализуемая за счет мартенситных реакций. В последнее время среди различных механизмов пластичности широкое распространение получила модель реализации деформации за счет прямого и обратного мартенситных превращений [15]. С этой разновидностью деформации связаны такие технически важные свойства материалов, как пластичность превращения и эффекты памяти формы. Ниже изложена методика построения локальных инвариантов на примере одного из частных случаев мартенситной пластичности, когда при прямом мартенситном превращении имеет место только эффект пластичности превращения, т. е. накопление деформации в сторону приложенного напряжения, а при обратном — только эффект памяти формы, или возврат этой деформации.  [c.22]

Во время мартенситных превращений резко снижается сопротивление неупругому деформированию, т. е. возникает эффект пластичности превращения. Это сопровождается, в частности, интенсивной релаксацией напряжений, причем аномалия пластичности сопровождается не разупрочнением, а, наоборот, максимумом предела прочности [15].  [c.192]

Здесь первое слагаемое отражает эффект пластичности прямого мартенситного превращения, а второе — эффект памяти формы при нагреве.  [c.25]

Рентгенографические исследования [100, 109] подтверждают, что непосредственно в процессе деформирования стали по режиму ВТМО происходит выделение углерода и одновременное дробление блоков аустенитных зерен. Однако у стали, не прошедшей отпуска, последний эффект не проявляется, поскольку он перекрывается более сильным эффектом, связанным с обеднением аустенита углеродом при деформации. При сравнительно небольших степенях обжатия (до 30%), не вызывающих значительного выделения углерода из твердого раствора, но приводящих к его деформационному упрочнению, снижается способность аустенита к образованию полос сдвига. А именно полосы сдвига при их образовании являются потенциальными центрами кристаллизации (для последующего мартенситного превращения). Все это приводит к увеличению остаточного аустенита после таких режимов ТМО, что было отмечено также в ряде других работ [106, 120 и др.]. При больших степенях деформации решающую роль в рассматриваемых процессах приобретает другой фактор — обеднение аустенита углеродом. В результате точка мартенситного превращения повышается, а количество остаточного аустенита в структуре стали уменьшается [100]. Такое изменение соотношения фазовых составляющих приводит к повышению не только прочности, но и пластичности стали при некоторых средних значениях обжатия после ВТМО наблюдается максимум пластичности, что соответствует состоянию, когда после закалки сохраняется наибольшее количество остаточной у- или р-фазы (для сплавов на основе титана) [100, 130, 134].  [c.82]


Итак, эффект памяти формы в сплавах сопровождается структурными превращениями. В этом случае можно воспользоваться энтропийной теорией пластичности и прочности для описания изменения свойств материалов с ЭПФ, если известны, например, термодинамические характеристики превращения.  [c.300]

Трехкомпонентные сплавы на основе Си — Zn являются сравнительно пластичными, интеркристаллитное разрушение в них затруднено, поэтому в настоящее время только они из группы медных сплавов и находят практическое применение. В общем в качестве сплавов с эффектом памяти формы применяются трехкомпонентные сплавы с добавками А1, Се, 51, 5п, Ве. Одной из причин этого является то, что в области составов /3-фазы, в которой в двухкомпонентных сплавах Си — Zп (рис. 2.46) происходит термоупругое мартенситное превращение, Т превращения понижается до слишком низкой, поэтому необходимо регулировать Г превращения путем добавки третьего элемента. На рис. 2.47 по-  [c.102]

Сопоставление фазового состава сплавов двух уровней чистоты в одинаковых структурных состояниях до и после деформации (см. табл. 13 и 16) подтверждает более высокую стабильность аустенита в сплавах промышленной чистоты. Способность к упрочнению менее стабильных чистых (у+е)-сплавов, за счет развивающегося при деформации мартенситного превращения, выше, поэтому они имеют показатели прочности почти на уровне промышленных . Сплав с 20% Мп последний из исследованной группы промышленных сплавов, где образуется а-мартен-сит, а сплав с 23% Мп — е-мартенсит деформации (см. табл. 16), но эффекта повышения пластичности этих сплавов не наблюдается. Повышение пластичности сплава с 30% Мп происходит не за счет мартенситного превращения, развивающегося при деформации, и не за счет разупрочнения, хотя наблюдается некоторое снижение предела  [c.162]

Вместе с тем на сплавах системы А1—Ge показано, что эффект сверхпластичности наблюдается при lOO-f-200 мкм [31- 33]. При этом не обнаружено образование субструктуры в процессе деформации. В то же время найдена корреляция между исходной пористостью сплавов, возникающей в результате фазового превращения при нагреве до температуры испытаний, и относительным удлинением в условиях СП течения [32]. Максимум пластичности получен в сплаве А1 — 0,4 % Ge, в котором исходная пористость также достигла наибольшего значения [примерно 0,8 % (объемн.)]. В работе [33] показано, что эффект СП в сплавах А1—Ge обусловлен тем, что пористость способствует развитию комбинации механизмов, характерной для обычных СП сплавов, а поскольку пористость поддерживается на постоянном уровне, она не ведет к разрушению материала.  [c.16]

Результаты этих исследований горячей пластичности жаропрочных сплавов и их сравнение с данными для однофазных никеля и нихрома позволяют сделать заключение O важном влиянии -фазы на СП течение. Вместе с тем выяснение роли 7 -фазы в реализации эффекта СП в жаропрочных никелевых сплавах требует проведения специальных экспериментов для определения связи структурного состояния и свойств сплавов. Следует, однако, отметить ряд методических особенностей при. изучении структуры жаропрочных сплавов, которые не всегда учитываются при проведении экспериментов. Прежде всего, структура сплавов обычно исследуется при комнатной температуре и она может не соответствовать высокотемпературному состоянию. Как известно, при нагреве жаропрочных сплавов происходят значительные фазовые и структурные превращения, связанные с развитием коагуляции и растворения 7 -фазы, а также карбидов. Особенно существенны эти изменения в мелкозернистых материалах. Между тем при охлаждении сплавов с высоких температур необходимо учитывать возможность выпадения -фазы. Во многих жаропрочных сплавах ее выделение удается предотвратить лишь при закалке очень тонких образцов. Все эти особенности поведения -у -фазы должны быть приняты во внимание при выяснении ее роли в обеспечении СПД.  [c.234]

Другим эффектом, связанным со значительным изменением объема при росте участков серого олова, является возникновение очень больших напряжений как в матрице, так и в новой фазе. В пластичном белом олове эти напряжения частично снимаются путем пластической деформации, в сером же олове напряжения очень быстро приводят к возникновению трещин, результатом чего является характерное растрескивание продуктов превращения. Компактные образцы серого олова могут быть получены при использовании исходных тонких пластин или проволок белого олова этим способом могут быть выращены и монокристаллы серого олова. Специфические черты превращения приводят к тому, что оно при нагревании почти полностью определяется скоростью образования зародышей, и к тому моменту, когда из-за возникновения трещин рост прекращается, все кристаллы белого олова достигают примерно одинакового размера.  [c.286]


Работы, посвященные мартенситной сверхпластичности, в основном относятся к изучению пластичности во время мартенситного у->-а-превращения, обусловленного деформацией. За последнее время появилось несколько работ по особой мартенситной сверхпластичности при Y=f= e-nepe-ходе в двухфазных железомарганцевцх сплавах с ГПУ-ре-шеткой [4,93, 138, 158, 161, 162]. Наиболее значительными из них являются работы О. Г. Соколова [4, 162] и Н. Богачева [1, 162], которые показали, что при у е-переходе наблюдаемый эффект пластичности превращения заключается в резком снижении сопротивления деформированию и релаксации напряжений во время превращения. Зависимость степени релаксации от объема е-фазы установлена в работах И. Н. Богачева и Б. А. Потехина [158] при исследовании релаксации внешних напряжений в сплаве Г20 и стали 30Х10Г10 при повторяющихся фазовых переходах. Сделано заключение, что релаксация напряжений происходит вследствие ослабления межатомного взаимодействия при перестройке кристаллической решетки. Кроме того авторы считают, что существенно важным является взаимодействие микронапряжений, возникающих в процессе образования е-фазы, с полем внешних напряжений.  [c.129]

Несмотря на значительные успехи теории дислокаций, доминирующей в большинстве современных физических теорий пластичности, до сих пор не удалось дать сколь-нибудь приемлемое объяснение эффекту пластичности превращения на основе дислокационно-атомистического представления. Общие формальные соображения такн е мало что разъясняют. Между тем вопрос создания теории столь широко распространенного явления диктуется не только требованиями практики, но и соображениями общего характера, поскольку неясно, почему здесь оказываются непригодными обычные приемы анализа. На наш взгляд, возникающие трудности могут быть естественным образом преодолены переходом на более крупномасштабный структурный уровень рассмотрения пластического формоизменения с привлечением аппарата теории границ. Идея состоит в следующем принято, что фазовое превращение в поле механических напряжений облегчается, если напряжения совершают положительную pa6oi y на дисторсиях превращения, и наоборот, затормаживается, если работа отрицательна. Поэтому благоприятно ориентированных фаз появляется больше и дисторсия превращения разных знаков (в отличие от ненапряженного кристалла) не компенсируется. В результате возникает макроскопическая дисторсия, воспринимаемая как деформация пластичности превращения. Обращение к теории границ позволяет избавиться от необходимости детального атомно-дислокационного рассмотрения различных вариантов перегруппировки атомов в процессе превращения, т. е. ограничиться анализом сразу на крупномасштабном структурном уровне. .  [c.203]

Регистрируемое на различных этапах термоцикла изменение размеров образцов является суммарным и состоит из деформации нормальной ползучести (внешние напряжения не превышают предел текучести ни одной из фаз), объемного эффекта фазового превращения и трансформационной деформации. Поэтому величина деформации за цикл должна зависеть от темпа смены температур и величины температурных градиентов. Авторы работы [294] такой зависимости не обнаружили. Однако в железе высокой чистоты, например при термоциклировании с перепадом температур, появляются деформации, которые не являются следствием внешней нагрузки [331]. В связи с этим авторы работ [287, 348] при изучении эффекта внешней нагрузки предприняли меры с целью устранения влияния продольных температурных градиентов. В отличие от работы [294], на железе и стали обнаружена зависимость остаточной деформации от скорости фазового превращения. Клинард и Шерби [287] дифференцировали размерные изменения, обусловленные трансформационной деформацией, нормальной ползучестью и различием удельных объемов феррита и аустенита как и авторы [294], они пришли к выводу, что трансформационная деформация при нагреве образца значительно больше, чем. при охлаждении. Петче и Штанглер [348] варьировали в широком диапазоне длительность термоцикла, интервал температурных колебаний и скорость изменения температуры. Ими показано, что при широком температурном интервале (примерно 200° С), в котором полиморфные превращения железа происходят полностью, деформация за определенное время пропорциональна числу циклов и трансформационная пластичность почти не зависит от скорости изменения температуры и длительности цикла. При узком интервале температурных колебаний (примерно 60° С) деформация за одно и то же время испытания почти одинакова и не зависит от числа циклов и скорости изменения тем-  [c.69]

Изтзестно, что фазовые превращения сопровождаются резким снижением сопротивления пластическому деформированию. Это явление, классифицируемое как пластичность превращения, зафиксировано во многих кристаллических материалах, например, при а Я-превращепиях в сталях, ири закалке ца мартенсит и отпуске последнего, в большой группе сплавов, обладающих эффектом памяти формы, в карбидах, окислах, кварце, у трип-сталей и т. п. [38,  [c.202]

Исключительно большое прикладное значение проблемы пластичности превращения связывают с рядом обстоятельств широким его использованием при создании новых материалов с наперед заданными свойствами и разработке прогрессивной технологии (например, для устранения пос-лезакалочного коробления изделий [63]) в связи с необходимостью развития инженерных способов расчета остаточных напряжений, возникающих при термообработке, и выбора композиций для трип-сталей или придания пластических свойств хрупким неметаллическим кристаллам из-за широкого внедрения материалов с эффектом памяти формы. Ве.лико и научное значение проблемы пластичности превращения. Во-первых, потому, что необходимо глубже понимать физику лластичности во-вторых, из-за принадлежности этого свойства к фазовым превращениям вообщвк  [c.202]


Таким образом, результаты экспериментальных исследований однозначно свидетельствуют о том, что на повышение пластичности жаропрочных никелевых сплавов оказывают влияние не только размер зерен матрицы 7-фазы, но также вид и распределение частиц 7 -фазы, которые в свою очередь зависят от предварительной обработки и от условий нагрева к началу деформации. Наиболее благоприятно с точки зрения повышения пластичности превращение когерентных выделений в зерна -фазы, т. е. получение при обработке обычных межфазных границ. Эксперименты показывают, что в целом оптимальной для реализации эффекта СП является микродуплексная структура, состоящая из зерен у- и у -фаз.  [c.239]

Пластичность превращения, которой посвящена настоящая глава, иногда также называют несколько неуклюжим образом сверхпластичностью превращения . Впервые этот.эффект был описан Совеуром [325] для железных стержней, подвергнутых испытаниям на кручение в условиях температурного градиента. Кручение концентрировалось в тех местах стержня, где появлялся фазовый переход а— Y- Совеур четко установил, что когда железо претерпевает альфа-гамма-переход, оно приобретает временную пластичность, которая намного больше пластичности у-фазы железа прй значительно более высокой тем- пературе , Вассерманн [374] наблюдал пластичность превращения в аустенитных сталях Ре — 30% Ni при образовании мартенсита. Вслед за Бочваром советские исследователи (см, [303]) изучали сплавы AI— Zn и Al- u в процессе эвтекто-идного распада. Они использовали слово сверхпластичность для явления, которое наблюдали и которое ими объяснялось как результат интенсивного переноса атомов путем диффузии, сопровождающей процесс распада твердого раствора . По  [c.239]

Методами высокотемпературной металлографии изучена пластичность при охлаждении под действием растягивающих напряжений железомарганцевых сплавов типа Г20. Показано, что в процессе мартенситного вращения имеет место эффект сверхпластичности, выраженный тем сильнее, чем выше уровень приложенных напряжений. Явление сверхпластичности при превращении сопровождается релаксацией напряжений 1 рода. Иллюстраций 4, библиогр. 3 назв.  [c.165]

Вероятно, наиболее значительное воздействие на материалы оказывают ядерные превращения основных и легирующих элементов при взаимодействии их с тепловыми нейтронами. При этом больщннство эффектов связано с появлением гелия, образующегося при взаимодействии нейтронов с ядрами °В, или при реакции, в которой Ni сначала превращается в Ni, затем в результате реакции (п, а) превращается в Ре и гелий. Реакция на ядрах бора существенна при относительно малых дозах облучения, так как имеет высокое сечение захвата нейтронов и поэтому быстро выгорает, а реакция на ядрах никеля существенна при очень высоких дозах, так как образование гелия пропорционально квадрату флюенса нейтронов. Рис. 8.4 иллюстрирует изменение числа атомов гелия на 1г никеля с флюенсом тепловых нейтронов. При содержании бора 2-10 % это число составляет l,6 10 (в естественном боре 20% изотопа Б). Бор в количестве 2-10 —5-10 2% добавляют к некоторым аустенитным сталям для улучшения их свойств, где обычно он концентрируется по границам зерен. При флюенсах тепловых нейтронов 3-1№4 нейтр/см гелий, получающийся при ядерных реакциях В, является преобладающим, но при более высоких флюенсах количество гелия, образовавшегося по реакции (и, а) на ядрах никеля, далеко превосходит его. Однако гелий, получаемый на ядрах никеля, первоначально диспергирован по всему материалу и только при температуре >750° С он мигрирует к границам зерен. Действие гелия, полученного таким образом, хотя и недостаточно для уменьшения пластичности, приводящего к разрушению изделия, должно учитываться в расчетах. Уменьшение пластичности малозаметно до концентрации гелия 10 % при температуре <750° С. Более заметен этот эффект для таких сплавов, как Р516, которые содержат до 5-10 7о В и 40% Ni, хотя изготовляемые из них узлы не подвергаются значительному нагружению при высокой температуре в процессе эксплуатации тепловыделяющего элемента.  [c.97]

Особенности механич. свойств С. обусловлены различием упругих свойств образуювдих их фаз (изменение Электронной структуры, образование нехарактерных для металлов кристаллич. решёток и т. д.), а также протеканием фазовых превращений под действием мехавйч. напряжений и др. В С. наблюдаются эффекты упрочнения в результате закрепления дислокаций на примесных атомах и торможения их движения, выделения частиц 2-й фазы и т. д, В условиях деформации под действием пост, нагрузки (ползучесть) при движении дислокаций со скоростью, превышающей скорость диффузии примесных атомов, имеет место отрыв дислокаций от атмосферы примесей (атмосферы Котрелла), при замедлении дислокаций они вновь захватываются атмосферой примесей (деформац. старение), что приводит к изменению пластичности и прочности. В эвтектоидных С. при определённых температурно-скоростных условиях деформации наблюдается явление с в е р х п л а-  [c.651]

Сопоставление с другими сплавами, обладающими эффектом памяти формы. По результатам исследования деформационного поведения сплавов Си — А1 — N 1 на поликристаллических и бикристаллических образцах установлено, что интеркристаллитное разрушение происходит только в случае возникновения концентрации напряжений на границах зерен в упругой области или после превращения. У бикристаллов, в которых не возникает концентрации напряжений в процессе деформации, наблюдается такое же деформационное поведение, как и у монокристаллов. Их разрушение происходит как транскристаллитное. Следовательно, чтобы повысить пластичность сплавов с эффектом памяти формы, предотвратив при этом интеркристаллитное разрушение, необходимо предотвратить возникновение концентрации напряжений на границах зерен или обеспечить действие такого механизма деформации, при котором легко происходит релаксация напряжений на границах зерен.  [c.128]

Ориентационная зависимость деформации превращения во всех сплавах с эффектом памяти формы очень сильная. Когерентность деформации на границах зерен не сохраняется. Для предотвращения интеркрис-таллитного разрушения необходимо, чтобы при низких напряжениях действовал такой механизм деформации, при котором происходит релаксация напряжений. В сплавах Т1 — N1 после обработки, ведущей к образованию твердого раствора, напряжение течения, обусловленного скольжением дислокаций, низкое — 100 МПа. Можно считать в связи с этим, что сплавы Т( — N1 в большей степени, чем сплавы на основе Си удовлетворяют условию высокой пластичности.  [c.129]

Эффект повышения пластичности при фазовых и структурных превращениях наблюдался в ряде исследований (например,. Воробьева). Возможно, что этот эффект связан с тем, что при фазовых превращениях сильно возрастает концентрация вакан-  [c.257]

Последнее время значительно возрое интерес к получению наноструктурных керамических материалов (размер зерна < 100 нм) с уникальными механическими свойствами. Низкотемпературная пластичность и повышенная по сравнению с монокристаллом твердость обнаружены у диоксида титана [6, 25] для диоксида тдиркония, стабилизированного оксидом иттрия, зафиксировано явление сверхпластичности [25]. Для объяснения эффекта сверхпластичности керамики были разработаны соответствующие модели как в рамках теории дислокаций, так и основанные на теориях фазовых превращений [12]. Предложена модель, основанная на представлении о том, что поли-кристаллический материал является, по существу, композитом, состоящим из материалов объема и границ зерен, и свойства такого материала формируются на основе свойств его компонентов согласно правилу смесей. Количественные оценки показали, что доминирующий вклад в свойства нанокерамического материала дают границы, а не объем зерен, что привело к новому пониманию роли состава, состояния и свойств межзеренной фазы [12].  [c.305]


Другой эффект, который отсутствует или не имеет значения при термоциклировании монолитных материалов, но должен приниматься во внимание разработчиками эвтектических композиций — внутренние напряжения, которые возникают вследствие различия температурных коэффициентов линейного расширения эвтектических фаз. Эти напряжения можно оценить, задаваясь упругими характеристиками фаз они пропорциональны произведению разницы коэффициентов линейного расширения и интервала температур (Аа ДГ), которые были названы Лейзло [36] деформационным потенциалом мозаичности. Остаточные напряжения могут превысить предел текучести пластичной фазы и вызвать достаточно большую пластическую деформацию, приводящую к повреждению материала при циклической термической усталости [19]. Кроме того, остаточные напрянсения зависят от фазовых превращений, протекающих в нестабилизированных сплавах на основе железа или 1<обальта.  [c.154]

Исследованиями последних десятилетий установлено, что существует обширный класс материалов (сплавы на основе никелида титана TiNi, латуни и бронзы сложного состава и др.), у которых элементарный акт пластичности осуществляется за счет обратимого мартенситного превращения, упругого двойникования и ряда других процессов, коренным образом изменяющих закономерности неупругого деформирования. У этих сплавов, в частности, может наблюдаться полная или частичная обратимость неупругой деформации, называемая эффектом памяти формы.  [c.837]

Предпереходные аномалии были обнаружены акже для структурных фазовых переходов первого рода в твердом состоянии в системах Fe—N1, Fe—Мп и др. Это переходы типа мартенситного превращения, характеризующиеся малой теплотой и кристаллографической возможностью кооперативных смещений атомов. В работе [11.221 были получены температурные зависимости / в сплавах Fe—Мп и обнаружено уменьшение примерно за 50° до температуры мартенситного превращения (рис. 11.11). В этом же (только еще более широком, около 200 °С) интервале температур было обнаружено аномальное увеличение коэффициента диффузии и пластичности. Это позволило авторам указать, что для объяснения эффекта недостаточно обычного предположения о не-  [c.152]

Сопоставление свойств при прямом и обратном мар-тенситном 7ч е-превращениях в сплавах Г17 и Г20С2 показывает, что аномалия пластичности в железомарганцевых сплавах при прямом 7->е-переходе в 3—5 раз больше, чем при обратном 8 7, что свидетельствует о различном механизме сверхпластичности при прямом и обратном мар-тенситном превращениях. Важной особенностью фазового 7ч=ь8-превращения является то, что оно происходит при относительно низких температурах и по бездиффузионному мартенситному механизму. Поэтому процессы диффузионного характера присущие классической структурной сверхпластичности,— перемещение зерен, рекристаллизация, рекомбинация дефектов, высокотемпературная ползучесть, малосущественны [4]. Величина деформаций во многом будет определяться ориентацией кристаллов новой фазы относительно внешнего напряжения [93]. При 7- е-перехо-де эффект от текстуры е-фазы должен быть выше [4].  [c.133]

Изложенное указывает на целесообразность оценки влияния обработки в СП состоянии на изменение механических свойств магниевых сплавов. Учитывая микроструктуру, характерную для СП состояния, можно ожидать, что такая обработка приведет к повышению пластичности, ударной вязкости и снижению анизотропии механических свойств. При этом интересно выяснить, влияет ли СПД на изменение служебных свойств, связан ли этот эффект с измельчением микроструктуры сплавов, а также влияет ли СПД на последующие фазовые превращения в дисперсионнотвердеющих сплавах.  [c.134]

Распад мартенситной структуры или метастабильного р-твердо-го раствора в титановых сплавах можно резко интенсифицировать холодной деформацией после закалки. Образование при старении разориентированных выделений а- и р-фаз позволяет при последующем нагреве до температур рекристаллизации получить УМЗ микроструктуру. Так, в работе [302] характеристики СП сплава Р-П1 (аналог ВТЗО) были существенно повышены путем предварительной закалки из р-области, холодной деформации и старения. Размер зерен после такой обработки составляет 0,5—1 мкм. Если сплав с крупнозернистой микроструктурой проявляет эффект СП только в р-области, то после такой обработки сплав в а+р-облас-ти показывает высокую пластичность и низкие напряжения течения. При 700—730 °С (температура полного полиморфного превращения 745 С) в интервале е= 10 , - 6-с напряжения течения составляют 27—67 МПа, а относительное удлинение 200—500 %.  [c.210]

Влияние мартенситного у - а превращения, протекающего под действием пластической деформации в метастабильных аустенитных сплавах, на пластичность аустенита впервые, по-видимому, отмечено в работах Вассермана [5] и Мэтью [272]. Авторы этих работ наблюдали повьтение текучести и дефоршсруемости материала в момент преврашения. Впоследствии это явление было использовано для создания высокопрочных аустенитных сталей с высокой пластичностью и получило название трип-эффекта [21] Эффект повышения пластичности наблюдается в том случае, если деформация метастабильных сплавов осуществляется при температурах нижеМ но выше М , причем сильно зависит от кинетики развития мартенситного 1фе-вращения при деформации [2701, Кристаллы мартенсита деформации образуются в аустените в местах концентрации напряжений. Образующийся мартенсит локально упрочняет материал, и пластическое течение переходит на соседние участки. Этот механизм, многократно повторяющийся на новых участках аустенита в процессе деформации, предотвращает преждевременное разрушение и приводит к повышению пластичности. Одновременно сохранению пластичности способствует сдвиговый характер мартенситного превращения, обусловливающий релаксацию внутренних напряжений и препятствующий возникновению и развитию трещин.  [c.204]

Способ упрочнения, сочетающий гидроэкструзию и фазовый наклеп, имеет ряд положительных сторон. Во-первых, не требуется больших деформаций - достаточна степень деформации 30-40%. Во-вторых, мелкозернистая структура фазонаклепанного аустенита с границами, упрочненными выделениями дисперсных легированных карбидов, обладает повышенным запасом пластичности по сравнению, например, со структурой с поЕышенной плотностью равномерно распределенных дислокаций или со структурой дисперсионного упрочнения с высокой плотностью выделений. Кроме того, в этом методе упрочнения повышение пластичности высокопрочного состояния обусловлено появлением мартенсита деформации (трип-эффект). Метод фазового наклепа, который в сочетании со старением и гидроэкструзией позволяет улучшать механические свойства немагнитных материалов, интересен также проявлением сложных физических процессов, сопровождающих прямое и обратное фазовое превращения и определяющих в конечном итоге структурные механизмы высокого упрочнения.  [c.244]

Холодные трещины образуются чаще всего в зоне термического влияния, реже в металле щва сварных соединений среднелегированных и высоколегированных сталей перлитного и мартенситного классов (рис. 17). Появление холодных трещин объясняют действием комплекса причин. Одна из них — влияние высоких внутренних напряжений, возникающих в связи с объемным эффектом, сопутствующим мартенситному превращению, происходящему в условиях снижения пластичности металла. Поэтому холодные трещины наблюдаются как при температурах распада остаточного аустенита (120°С и ниже), так и при комнатной температуре через несколько минут, часов, а иногда и через более длительное время после окончания сварки. Высокие внутренние напряжения могут также развиваться вследствие адсорбции растворенного в металле водорода на поверхностях вну-Ч тренних дефектов и накопления его в микронеснлощнос-тях. Возникновение холодных трещин связывают также замедленным разрущением металла под действием на-Г Чтряжений, которые согласно схеме Зинера (рис. 18) на- апливаются по границам зерен, перпендикулярным на- ч равлению действия нормальных напряжений.  [c.17]


Смотреть страницы где упоминается термин Эффект пластичности превращения (ЭПП) : [c.208]    [c.240]    [c.26]    [c.143]    [c.26]    [c.128]    [c.140]    [c.170]    [c.228]    [c.452]    [c.14]    [c.246]    [c.110]    [c.222]   
Смотреть главы в:

Металлы и сплавы Справочник  -> Эффект пластичности превращения (ЭПП)



ПОИСК



Пластичность превращения

Превращение



© 2025 Mash-xxl.info Реклама на сайте