Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свариваемость сталей — Основные характеристики

Сталь для строительных конструкций [18,29]. Основными характеристиками этой категории стали являются повышенная прочность (при относительно высокой вязкости), свариваемость и коррозионная стойкость.  [c.374]

Основными характеристиками свариваемости сталей является их склонность к образованию трещин и механические свойства сварного шва.  [c.24]

Конструкционные строительные стали и сплавы. Свойства этих сталей и сплавов определяются в основном механическими (предел прочности, относительное удлинение, твердость, ударная вязкость) и технологическими (жидкотекучесть, свариваемость, ковкость и др.) характеристиками. Для конструкционных строительных сталей и сплавов используются углеродистые (0,10...0,20% С) и низколегированные (Si, Мп, Сг и др.) стали (ГОСТ 19281—89 и 19282—72). Эти стали, как правило, обыкновенного качества и поставляются по механическим свойствам.  [c.170]


В начальный период развития сварочной техники все материалы и сплавы в зависимости от их способности образовывать сварные соединения необходимого и достаточного качества разделяли на обладающие хорошей, удовлетворительной и неудовлетворительной свариваемостью. Для сталей в основном эта характеристика была связана с содержанием в них углерода. Современные знания о природе сварочных процессов позволяют утверждать, что все однородные металлы и сплавы могут образовывать при сварке плавлением сварные соединения удовлетворительного качества. Разница между металлами, обладающими хорошей и плохой свариваемостью, заключается в том, что для соединения последних необходима более сложная технология сварки (предварительный подогрев, ограничение погонной энергии сварки, последующая термообработка, сварка в вакууме, облицовка кромок и т. п.).  [c.143]

В случае необходимости расчета механических свойств сварного соединения выбирается пункт три основного меню. В нем пользователь выбирает марку свариваемой стали и электродной проволоки. Меню содержит более 50 марок стандартных сталей и 10 марок электродных проволок. В случае, если требуется сварить сталь, отсутствующую в списке, или исследовать влияние какого-либо химического элемента на прочностные характеристики соединения, можно задать химический состав металла и проволоки самостоятельно, используя соответствующие пункты меню.  [c.73]

Основное различие в распределении полей остаточных напряжений в соединениях однородных и разнородных сталей разных структурных классов возникает при термической обработке или высокотемпературной эксплуатации (рис. 32.10, г, ). На стадии нагрева и выдержки при максимальной температуре обоих типов соединений остаточные напряжения снимаются за счет прохождения процесса релаксации, при последующем охлаждении однородных соединений условий для возникновения поля собственных напряжений нет, поэтому термическая обработка является эффективным способом их снятия. В отличие от этого при охлаждении соединений из сталей разных структурных классов в них возникают новые внутренние напряжения, условно называемые напряжениями отпуска, обусловленные разностью характеристик термического расширения свариваемых сталей. В соединениях аустенитной стали с перлитной охлаждение после нагрева вызывает в аустенитной стали появление остаточных напряжений растяжения, а в перлитной — уравновешивающих их напряжений сжатия. В сварных соединениях перлитной стали с высокохромистой наоборот в перлитной стали возникают напряжения растяжения, а в высокохромистой сжатия. Аналогичные закономерности распределения остаточных напряжений сохраняются в биметаллических изделиях, выполненных наплавкой, взрывом и другими способами, например, вибрационной обработкой.  [c.434]


Монография состоит из семи глав. В гл. I рассмотрены основные положения теории фазовых превращений в металлах и сплавах в твердом состоянии, а также закономерности превращений железа, титана и их сплавов в изотермических условиях. В гл. II показаны условия их протекания в зоне термического влияния при сварке плавлением. В гл. III описаны новые методы и аппаратура для изучения кинетики фазовых превращений и изменений структуры и свойств металлов в неравновесных условиях при сварке и термомеханической обработке, а также для исследования задержанного разрушения и образования холодных трещин. В гл. IV приведены результаты исследования превращений при непрерывном нагреве, кинетики роста зерна и гомогенизации аустенита и Р-фазы сплавов титана при сварке. В гл. V рассмотрены основные закономерности фазовых превращений в условиях непрерывного охлаждения при сварке. В гл. VI изложен механизм задержанного разрушения сталей и сплавов титана, установлены критерии оценки этого явления и показано влияние легирующих элементов, параметров термического цикла и жесткости сварных соединений на" сопротивляемость этих материалов образованию холодных трещин при сварке. В гл. VII приведены характеристики свариваемости сталей и сплавов титана различных структурных классов и систем легирования, сформулированы критерии выбора технологии и режимов их сварки и показаны пути регулирования структуры и свойств сварных соединений как в процессе сварки, так и при последующей термической, термомеханической или механико-термической обработке.  [c.10]

Серьезным производственным дефектом являются трещины, образовавшиеся при сварке. Их проявление происходит в интервалах температур 1100-1300 и 100-300 С. Первые назьшаются "горячими , вторые - холодными . Швы сталей, склонных к закалке, более подвержены трещинообразованию, так как при сварке происходит закалка части металла с понижением его пластических характеристик в зоне термического влияния. Особая опасность трещин объясняется несколькими обстоятельствами. Во-первых, трещина уменьшает сечение сварного стыка, ослабляя прочность. Во-вторых, она служит концентратором напряжений. В-третьих, не все трещины выходят на поверхность сварного соединения и в таких случаях их невозможно выявить визуально. В-четвертых, нельзя определить скорость их развития при работе котла. Производственные трещины располагаются в основном металле, в зоне термического влияния и в сварных швах свариваемых деталей. Трещины, выходящие на поверхность шва, выявляются визуально или с помощью диагностических приборов. Внутренние трещины, не выходящие на поверхность, в основном находятся с помощью ультразвуковых дефектоскопов или иными методами.  [c.194]

Основным видом образцов сварных соединений для испытания на длительную прочность, как и при кратковременных испытаниях, являются образцы с поперечным швом. При этом, в зависимости от типа свариваемых изделий, форма образцов может изменяться. В большинстве случаев испытания ведутся на круглых десяти- или пятикратных образцах диаметром 8 или 10 мм. В случае сварки тонколистового материала используются плоские образцы, а для оценки свойств сварных стыков труб малого диаметра—трубчатые образцы. В пп. 2, 3 и 4 приведены значения пределов длительной прочности большинства используемых в сварных конструкциях энергоустановок сталей там же приведены указанные характеристики для металла швов и сварных соединений.  [c.22]

Склонность основного металла к разупрочнению при сварке — в ряде случаев одна из важных характеристик свариваемости высокопрочных сталей (преимущественно мартенсит-пых) и некоторых сплавов титана. Однако при выборе технологии и режимов сварки эта характеристика является вспомогательной.  [c.14]

В спецификации рабочих чертежей на ремонт указывают марки стали и электродов, примененных при ремонте. По возможности марка стали должна соответствовать марке основного металла, указанной в паспорте крана. Если отсутствует сталь требуемой марки, то для ремонта должна применяться сталь с хорошей свариваемостью, близкая по характеристикам к основному металлу.  [c.237]


По условиям свариваемости из малоуглеродистых сталей используют в основном сталь СтЗ и в менее ответственных случаях — сталь Ст4. Сталь СтЗ характеризуется степенью раскисления /сп — кипящая, гас — полуспокойная и сге — спокойная, и пятью категориями проверки качества (табл. 2.11.2). Буква А, Б или В перед маркой стали обозначает группу группа А — гарантированные механические характеристики  [c.383]

В зависимости от назначения изделия к нему предъявляют различные требования, обычно указываемые в технических условиях. Для конструкционной стали чаще всего указывают определенные величины механических свойств. Для характеристики свариваемости должны быть определены механические свойства сварного соединения, также указанные в технических условиях для основного металла. Методика, применяемая для этих испытаний, должна приводиться в технических условиях.  [c.225]

Проблема свариваемости включает склонность стали к локальному ухудшению основных эксплуатационных характеристик под влиянием сварки. Это, в первую очередь, снижение хладостойкости, обусловленное образованием грубой неоднородностью микроструктуры, динамическим деформационным старением, дисперсионным твердением за счет вьщеления частиц карбидов и карбонитридов. Оно выражается в повышении температуры хрупкости Гдд.  [c.156]

Для углеродистых сталей эта характеристика связана в первую очередь с содержанием в них углерода. Под хорошей свариваемостью низкоуглеродистой стали, предназначенной для изготовления конструкций, работающих при статических нагрузках, понимают возможность при обычной технологии получить сварное соединение, равнопрочное с основным металлом, без трещин в металле шва и без снижения пластичности в околошовной зоне. Металл шва и околошовной зоны должен быть стойким против перехода в хрупкое состояние при температуре эксплуатации конструкций и при наличии концентраторов напряжений, обусловленных формой узла.  [c.83]

Свариваемость металлов и сплавов при точечной сварке характеризует способность материала образовывать сварные точки стабильной прочности, без трещин и значительной пористости в ядре, без повреждения поверхности свариваемых деталей и без существенного снижения своих основных свойств Втабл. 112и113 приведены характеристики свариваемости сталей и цветных металлов по данным Американской ассоциации производителей контактно-сварочного оборудования (RWMA)  [c.366]

Кроме требований к типу электродных материалов, основной характеристикой свариваемости аустенитных сталей является их склонность к околошовному растрескиванию при сварке, термической обработке и в эксплуатации. Большинство однофазных гомогенных аустенитных кованых и катаных сталей, в том числе широко используемая сталь марки Х18Н10Т, обладают удовлетворительной стойкостью против образования околошовных трещин в условиях сварки. Она заметно снижается, однако, при введении в сталь повышенного содержания кремния (2—4%), ниобия более 0,8—1,0%, а также при легировании ее бором в  [c.211]

Для повышения механических свойств стали ДС был проведен ряд работ по уточнению температурного режима прокатки и методики охлаждения листов после прокатки, а также по согласованию химического состава стали (содержания углерода и марганца) с толщиной листов [81]. На одном из заводов для повышения предела текучести сталь ДС дополнительно раскисляли титаном. При содержании 0,03—0,05% Ti предел текучести повысился на 3—4 кГIмм при некотором понижении пластичности. Ограниченная свариваемость стали ДС и затруднения при ее производстве явились основными причинами, из-за которых производство этой стали в послевоенный период было прекращено, несмотря на ряд ее ценных характеристик.  [c.98]

Проведенные НА1МИ, МАЗ и КамАЗ совместные научно-иссле-довательские и опытно-конструкторские работы по созданию высокопрочной лонжеронной стали и технологии изготовления лонжеронов для автомобилей дали возможность рекомендовать для производства новую лонжеронную сталь 22Г2ТЮ, характеризуемую высокими механическими свойствами, обрабатываемостью и свариваемостью. Основные характеристики этой стали приведены ниже.  [c.365]

Основные характеристики типовых стыковых машин серийного выпуска приведены в табл. 18. Указанные в этой таблице наибольшие сечения деталей соответствуют сварке малоуглеродистой стали (кроме машины РСКМ-320У, для которой это сечение соответствует сварке среднеуглеродистой рельсовой стали). Ограничение сечения при непрерывной работе определяется нагревом машины и ее продолжительной мбщностью. Максимальное сечение свариваемых деталей при работе с перерывами определяется номинальной (кратковременной) мощностью. Площадь сечения свариваемых деталей иногда ограничивается не электрической мощностью машины, а величиной ее максимального усилия осадки. Это особенно часто наблюдается при сварке легированных, трудно деформируемых сталей. Например, на машине типа МСМ-150 при полуавтоматической работе возможна сварка деталей из малоуглеродистой стали сечением до 2400 мм . Мощность машины вполне достаточна для подогрева и оплавления деталей этого сечения и из аустенитной стали. Однако при максимальном усилии осадки, равном 6500 кг, и удельном давлении 2,7 кг мм получить сколько-нибудь удовлетворительную сварку деталей из аустенитной стали невозможно (максимальное  [c.233]

Основным конструкционным материалом для производства сварных конструкций в течение длительного периода являлась малоуглеродистая сталь (типа Ст.З, Ст.2 и др.), характеризующаяся гарантированной, но невысокой прочностью, высокой пластичностью и хорошей технологичностью, в том числе и свариваемостью. Немаловажное значение имеет и относительная дешевизна этой стали, не содержащей специальных легирующих элементов. Малоуглеродистая сталь наряду с указанными достоинствами имеет и ряд недостатков, из которых важнейшими являются относительно низкая прочность, пониженное сопротивление хрупкому разрушению и повышенная чувствительность к механическому старению. Последние два свойства в значительной мере определяются степенью раскисленности металла (кипящая, по-луспокойная и спокойная) даже лучшая из них — спокойная малоуглеродистая сталь характеризуется невысокими значениями ударной вязкости при минусовых температурах, что в ряде случаев ограничивает область ее применения. Интенсивными исследованиями в последние годы доказано, что применением специальных технологических приемов (регулируемая прокатка, термическое упрочнение и др.) или дополнительным введением в металл модифицирующих элементов (ниобий, ванадий и др.) можно заметно улучшить качественные характеристики малоуглеродистой стали, в том числе и ее сопротивление хрупкому разрушению. Можно преодолеть недостатки малоуглеродистой стали и путем перехода на низколегированные стали (стали повышенной прочности), повышенная прочность и сопротивляемость хрупким разрушениям у которых достигается присадкой легиру ющих элементов и измельчением структуры.  [c.4]


Сварные цепи применяются главным образом в подъемно-транспортном оборудовании в качестве грузовых и тяговых цепей. Их достоинство заключается в том, что они хорошо выдерживают высокие температуры и тяжелые условия эксплуатации и что их можно применять на блоках очень малого диаметра. Поэтому крутящий момент, создавае.мый грузо.м, мал, и весь подъемник может быть выполнен компактным и легким. Недостатком этих цепей является большой вес и. малые допускаемые скорости (менее 0,1 м сек), поэтому для передач (трансмиссио,нных приводов) сварные цепи непригодны. Сварные цепи изготовляют стандартных размеров с короткими или длинными звеньями, причем и те, и другие могут быть калибре-ванными (повышенной точности) или некалиброванными (с нормальной точностью). Для подъемников применя.ют короткозвенные калиброванные цепи. Материалом звеньев сварных цепей является мягкая сталь с пределом прочности при растяжении а р = 36-ь 40 кГ/мм , с относительным удлинением б <= 25%, хорошо свариваемая. Основные размеры, вес и допускаемые нагрузки для сварных цепей согласно ГОСТу 2319-55 приведены в табл. 81. В ЧССР эти характеристики сварных цепей регламентированы стандартами GSN 02 3211 и 02 3212.  [c.480]

Свариваемость этих сталей удовлетворительная. В качестве присадочного материала может быть применена проволока той же стали с обмазкой ЭНТУЗ, при этом свойства сварного шва близки к основному металлу. Для сварки необходимо предварительно подогревать кромки до 200—300° С. Для повышения коррозионной стойкости и пластических характеристик сварного соединения рекомендуется подвергать изделия термической обработке по режиму нагрев до 950° С, охлаждение на воздухе и последующий отпуск при 700° С. В тех случаях, когда термическую обработку изделий осуществить невозможно, следует подвергать местному кратковременному отпуску при указанной выше температуре только сварное соединение. Любые окислы, полученные в процессе сварки или термической обработки на сталях указанного типа и на любых нержавеющих сталях, должны быть полностью удалены.  [c.120]

Металлургическая свариваемость жаропрочных перлитных сталей, определяемая отношением металла к плавлению, металлургической обработке и последующей кристаллизации шва. не вызывает существенных осложнений. Технология сварки и сварочные материалы на современном уровне обеспечивают необходимую стойкость металла шва против образования торячих трещин и высокие характеристики, предъявляемые к основному металлу.  [c.225]

Все принялись за работу инженеры исследовательских бюро, научно-ис-следовательских институтов металлургической промышленности, специализированных лабораторий создавали высокопрочную нержавеющую жаропрочную сталь, искали новые тн-тано-алюминиевые сплавы для применения в менее температурнонапряженных местах конструкции, создавали сборочное, литейное, штамповочное и сварочное оборудование, проводили металлографические исследования для изучения поведения материала при сварке, тенденций к растрескиванию при нагреве и охлаждении, взаимодействия основных и вспомогательных конструктивных материалов, законов кристаллизации в сварной зоне, контролировали процесс кристаллизации при работе с материалами с различными характеристиками свариваемости.  [c.241]

Сварка алюминия и его сплавов с цветными металлами, их сплавами и сталями. Исследования взаимодействия алюминия с другими металлами при сварке показали, что основные трудности при изготовлении и использовании биметалла связаны с большой химической активностью алюминия. С другими металлами он образует хрупкие твердые соединения (алюминиды), а с кислородом воздуха — прочные твердые слои окислов. Наличие в переходной зоне прослоек алюми-нидов и недиспергированных окислов является основной причиной снижения прочности, ударной вязкости и большого разброса механических характеристик соединения. Особое место отводится химической обработке алюминия и его сплавов перед сваркой. Окисная пленка на поверхности металла может удаляться травлением (в растворе щелочи КОН — для алюминия, ортофосфорной кислоты — для сплавов АМг и АМц с последующим осветлением в азотной кислоте), зачищаться металлическими щетками на воздухе или в вакуумной камере. Целесообразно после очистки от окислов свариваемые поверхности алюминиевых деталей покрывать акриловыми смолами, лаками и полимерами на основе стирола, разлагаемыми без остатка при нагреве в вакууме.  [c.140]


Смотреть страницы где упоминается термин Свариваемость сталей — Основные характеристики : [c.40]    [c.187]    [c.263]    [c.353]    [c.233]   
Справочник конструктора-машиностроителя Том 3 Изд.5 (1980) -- [ c.23 ]

Справочник конструктора машиностроителя Том 3 Издание 5 (1979) -- [ c.23 ]



ПОИСК



299 — Основные характеристики

299 — Основные характеристики характеристики

Свариваемость характеристики

Сталь Свариваемость

Сталь Характеристики

см Свариваемость



© 2025 Mash-xxl.info Реклама на сайте