Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сила — вектор. Система сил. Эквивалентность сил

Итак, произвольная плоская система сил эквивалентна силе, приложенной в точке О и равной главному вектору R, и паре сил с моментом Мд, равным главному моменту системы сил относительно точки О. Точка О называется центром (точкой) приведения системы сил. Для случая л сил формулы (4.2) и (4.3 имеют вид  [c.52]

Итак, данная плоская система сил эквивалентна силе й и паре й, — й) но силы Д и — Д уравновешиваются, а потому данная система сил эквивалентна одной силе й, приложенной в точке О следовательно, эта сила Д является равнодействующей данной системы сил. Так как Д = Д, то равнодействующая плоской системы сил равна по модулю и направлению главному вектору этой системы, т, е.  [c.104]


Задачи элементарной статики. В элементарной статике рассматриваются различные системы сил, действующих на абсолютно твердое тело, с целью замены этих систем наиболее простыми системами, им эквивалентными, и нахождения необходимых и достаточных условий равновесия этих систем. Процесс замены систем сил простейшими системами, в частности одной равнодействующей, называют еще процессом приведения сил. (с)тот термин нельзя смешивать с термином сложение сил , который употребляется в случае сложения сил как свободных векторов.) Операция замены одной силы системой сил, ей эквивалентной, носит название разложения сил.  [c.189]

Величину и направление главного вектора произвольной системы сил определяют по формулам, аналогичным тем, по которым определяют равнодействующую системы сходящихся сил. Между тем главный вектор произвольной системы сил не является равнодействующей этой системы. В самом деле, равнодействующей называют силу, которая одна эквивалентна системе сил, а главный вектор сам по себе не эквивалентен данной системе сил, но эквивалентен ей только в совокупности с главным моментом.  [c.76]

Свобода переноса точки приложения силы вдоль линии ее действия является характерным свойством только абсолютно твердого тела. В деформируемом теле такой перенос силы недопустим. Например, если вдоль стержня к двум концам его приложить две равные по модулю и прямо противоположные по направлению силы Р и Р , направленные внутрь стержня, то деформируемый стержень будет сжиматься (рис. 4, а). Если же перенести эти силы вдоль линии их действия (рис. 4, б) в соответственно противоположные концы стержня, то в новом своем положении те же силы Р и Р будут растягивать стержень. В этом случае говорят, что сила, приложенная к деформируемому телу, есть вектор приложенный (неподвижный/. Этот пример показывает, что системы сил, эквивалентные в статическом смысле, могут быть не эквивалентны с точки зрения механики деформируемых тел.  [c.25]

В 18 было доказано, что произвольная плоская система сил эквивалентна совокупности силы, равной главному вектору Я, и пары,  [c.92]

В этом случае заданная система сил эквивалентна равнодействующей паре Р, — Р с вектором-моментом Мо, определяемым формулой (5.12)  [c.108]

В этом случае система сил эквивалентна одной силе (т. е. равнодействующей Я), геометрически равной главному вектору и приложенной в центре приведения 0  [c.108]

Итак, произвольная пространственная система сил эквивалентна главному вектору Н и главному моменту Мо-2. Введем понятие момента силы относительно оси.  [c.68]


Б. Неправильно. Если главный вектор и главный момент равны нулю, то вся система сил эквивалентна нулю, а это и есть условие равновесия системы сил.  [c.274]

Сложение сил по правилу параллелограмма называют векторным суммированием, а так как правило силового многоугольника получили как следствие правила параллелограмма сил, то вектор Й., замыкающий силовой многоугольник, называют векторной суммой сил. В нашем случае, когда все силы приложены в одной точке, равнодействующая сил и их векторная сумма совпадают, но существуют такие системы сил, для которых равнодействующая, т. е. сила, эквивалентная (по действию) системе сил, и векторная сумма этих  [c.19]

Ниже будет показано, что только неуравновешенная система сходящихся сил всегда эквивалентна одной силе - равнодействующей. Другие системы сил этим свойством не обладают. Рассмотрим частный случай силового многоугольника, когда векторы сил расположены на одной прямой (рис. 10). Для наглядности векторная сумма R проведена не по прямой, а рядом. Формула (1.7), конечно, справедлива, но можно получить простые соотношения и между величинами (модулями) сил. В случае, изображенном на рис. 10, а, имеем  [c.20]

Система сил произвольно расположенных в пространстве, эквивалентна двум силам, из которых одна сила приложена в произвольной точке, причем главный вектор и главный момент системы относительно этой точки соответственно равны главному вектору и главному моменту эквивалентной системы двух сил относительно той же точки.  [c.30]

Доказательство. Пусть дана сила приложенная в точке А (рис. 43). Затем возьмем систему, состоящую из силы Рд, приложенной в произвольной точке В, равную по модулю силе Р , ей параллельной и одинаково с ней направленной, и, кроме того, возьмем пару с векторным моментом т = в(Руд- Тогда по теореме об эквивалентности Р с Рд и паре с моментом th — Йд(Р , так как равны главные векторы этих систем и их главные моменты относительно точки В. Теорема доказана. Модуль IHb(P = P h. Плоскость пары т лежит в плоскости сил P, и Р . Произвольная пространственная система сил эквивалентна одной силе, приложенной в произвольно выбранном центре приведения О и равной главному вектору системы и одной паре, момент которой равен главному моменту  [c.59]

Если система сил плоская и центр приведения О лежит в плоскости сил, т>ч истема сил эквивалентна одной силе — главному вектору системы и одной паре, момент которой равен главному моменту системы, равному алгебраической сумме моментов всех сил относительно центра приведения О.  [c.60]

Если примем условие (4), то, как это следует из предыдущего пункта, существует бесконечно много систем S векторов, эквивалентных системе активных сил F и приложенных к тем точкам прямой а, которые, по предположению, являются закрепленными. То же самое можно сказать и о реакциях, возникающих в этих точках. Под действием такой системы сил (активных сил и реакций, эквивалентных, если не тождественных тем, которые имеются в действительности) тело останется, очевидно, в равновесии (вспомним о том, что было сказано в п. 5 относительно реакции, возникающей в закрепленной точке, и о системе внутренних сил). Оно останется поэтому в равновесии также и под действием данных приложенных сил F.  [c.113]

Замечание 2. Очевидно, что при переносе вектора какой-либо силы системы вдоль линии его действия главный вектор системы сил и ее главный момент относительно заданного полюса остаются неизменными. Поэтому из критерия эквивалентности системы сил, приложенных к твердому телу, следует, что, не нарушая движения тела и, в частности, его состояния равновесия), можно перенести точку приложения силы в произвольную точку тела, лежащую на линии действия этой силы, т. е. сила, приложенная к твердому телу, — скользящий вектор.  [c.128]

Следует заметить, что равенства (31.17) и (31.32) отнюдь не тождественны. Так, может случиться, что закон сохранения кинетического момента будет соблюдаться в движении относительном и не будет справедлив для движения абсолютного, или наоборот. Пусть, например, данная система состоит из весомых частиц тогда к каждой частице её приложена сила m g постоянного направления. Такая система сил эквивалентна одной силе, именно, весу Mg системы, приложенной к центру масс. Поэтому если рассматриваемая материальная система свободная, то закон сохранения кинетического момента выполняется для относительного движения вокруг центра масс но он не будет, вообще говоря, справедлив для движения абсолютного. Даже, если закон сохранения кинетического момента соблюдается для обоих движений, абсолютного и относительного, всё-таки постоянные во времени векторы Gq и <5 > будут, вообще говоря, различны и по модулю, и по направлению точно так же неизменные плоскости Лапласа для движений абсолютного и относительного будут в общем случае отличаться по своему направлению.  [c.313]


Для этой цели можно применить два приема. Первый прием основан на замене данной системы сил системой сил параллельных. Дело в том, что в любой системе с одной степенью свободы прямая, параллельная нормали к траектории в точке приложения силы и проведенная через конец вектора этой силы, является геометрическим местом концов векторов, изображающих силы, эквивалентные данной и приложенные в той же точке. В случае жесткого рычага концы векторов эквивалентных сил, имеющих общую точку приложения, будут лежать на  [c.157]

Решение задачи приведения сил даёт следующий осн. результат любая система сил, действующих на абсолютно твёрдое тело, эквивалентна одной силе, равной гл. вектору К системы и приложенной в произвольно выбранном центре О, и одной паре сил с моментом, равным гл. моменту Мц системы относительно этого центра. Отсюда следует, что любую систему действующих на твёрдое тело сил можно задать её гл. вектором и гл. моментом, — результат, к-рым широко пользуются на практике при задании, напр., аэродинамич. сил, действующих на самолёт или ракету, усилий в сечении балки и др.  [c.661]

Главный вектор данной плоской системы сил будет равен нулю, если построенный для нее силовой многоугольник окажется замкнутым. Этого условия было бы вполне достаточно для равновесия сходящихся сил. Но в случае произвольного расположения сил на плоскости система эквивалентна не одной силе, равной геометрической сумме сил, а совокупности этой силы, приложенной в произвольном центре О приведения, и пары, момент которой равен главному моменту Мд относительно выбранного центра О приведения. Поэтому если главный вектор данной системы равен нулю, а ее главный момент отличен от нуля, то система, очевидно, приводится к паре. Момент этой пары равен главному моменту данных сил относительно центра приведения. В данном случае значение главного момента не зависит от выбора центра приведения.  [c.81]

R O, M Q, т. е. главный вектор и главный момент не равны нулю. В этом случае система сил эквивалентна равнодействующей, которая равна по модулю главному вектору, параллельна ему, направлена в ту же сторону, но по другой линии действия (см. 5.3, п. 3).  [c.48]

R О, М = 0. в этом случае система сил эквивалентна равнодействующей, линия действия которой проходит через центр приведения и совпадает с главным вектором.  [c.48]

Принцип эквивалентности две системы сил эквивалентны тогда и только тогда, когда их главные векторы и главные моменты относительно одной и той же точки равны.  [c.101]

А. Неправильно. Если главный момент не равен нулю, то система сил эквивалентна одной силе только при определенном выборе центра приведения в общем случае главный вектор не является равнодействующей.  [c.97]

В механике абсолютно твердого тела действие любой системы сил эквивалентно действию ее главного вектора и главного момента. В механике деформируемых сред существенен характер распределения сил по телу.  [c.134]

Трп вида систем уравнений равновесия. В предыдущем параграфе было показало, что нлос ая система сил эквивалентна, в общем случае, результирующей силе R н результирующей паре с моментом то- Если и главиыг вектор R и главный момент л1о равны нулю, то н результирующая сила и результирующая па])а эквивалентны нулю и система сил уравновешенная. Если хс.тя бы одна пз двух величин R и то, отлична от нуля, то, как было показано в пн. 1.Я и 1.4, плоская система сил вквпвалентиа либо равнодействующей паре, либо равнодействующей силе. Следовательно, необходимые и достаточные условия равновесия плоской системы сил ) суть  [c.62]

Геометричеспая сумма всех сил си-у стемы наливается главным вектором системы сил и в от.аичие от равнодей-ствующей Р. обозначается К. Складывая пары Р, Р Д, Р Р3, Р3, получим эквивалентную им пару сил. Момент каждой присоединенной пары сил равен моменту соответствуюсцей силы относительно центра приведения  [c.56]

Таким образом, произвольная плоская система сил эквивалентна одной силе — главному вектору и одной паре, момент которой pa en главному моменту.  [c.36]

Для изучения внутренних сил применяют метод сечений, который позколяет внутренние силы переводить 1 разряд внешних сил и изучать их с помощью методов статики. Метод сечений заключается в том, что если тело находится в равновесии под действием системы внешних сил Р-,,. .., Рп (рис. 10.1, а), то отсекая мысленно, например, левую часть тела, рассматриваем условия равновесия его правой части (рис. 10.1, б). На поверхность сечения должны действовать силы, эквивалентные действию левой части на правую. Это будут распределенные по сечению внутренние силы, но по отношению к правой части тела они будут внешними. Система сил, действующая в сечении, как известно из статики, эквивалентна одной результирующей силе R (главному вектору) и одной паре сил с моментом М (главным моментом).  [c.116]

Из теоремы о приведении системы сил к силе и паре сил можно вывести условия равновесия системы сил, действующих на тело. Очевидно, что, если система сил находится в равновесии, то в равновесии находится и эквивалентная ей система, состоящая из силы и пары сил. Чтобы такая система сил была эквивалентна нулю, необходимо и достаточно равенства нулю как силы Я, так и момента пары (Ф, Ф ), равного главному моменту Яд. Получаются следующие векторные условия равновесия произвольной системы сил для равновесия системы сил, прилоохенмых к твердому телу, необходимо и достаточно, чтобы главный вектор систс.ны сил равнялся нулю а главный момент системы сил относительно любого у центра приведения такзхе равнялся нулю. 11наче, для того чтобы Р , , Р,,) сл> О, необходимы и достаточны условия  [c.42]


Очевидно, что такая система сил эквивалентна нулю, т. е. находится в равновесии. Наоборот, если данная система сил находится в равновесии, то должны выполняться условия (1). В самом деле, если бы, например, R фО, но Мо =0, то данная система сил привелась бы к равнодействующей R=R, приложенной в центре приведения О, и равновесия не было бы. Еслибы =0, но МоФО, то данная система сил привелась бы к одной паре и равновесия также не было бы. Не будет равновесия и в том случае, когда R ф0 и Мо фО, так как сила и пара не могут уравновесить друг друга. Отсюда следует, что для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы главный вектор этой системы сил и ее главный вектор-момент относительно произвольно выбранного центра приведения одновременно были равны нулю.  [c.185]

Тогда вторая сила R результируюпдей пары будет приложе а в точке О — конце перпендикуляра длины h, восстановле ного из точки О к глав 10му вектору И в ту сторону, откуда вращение силы R будет соответствовать знаку главного момента то. Например, на рис. 3.3 предполагалось, что то > 0. Отбрасывая силы й и — Д, приложенные в точке О, получаем, что заданная система сил эквивалентна одной с ле, т. е. равнодействующей  [c.61]

Тогда вторая сила R результирующей пары R, — R будет приложена в точке О — конце перпендикуляра длины h, восставленного из точки О перпендикулярно плоскости Л/о, R в ту сторону, чтобы, глядя с конца вектора Мо, видеть вращение, вызываемое силой R вокруг точки О против часовой стрелки (см. рис. 5.8). Отбрасывая силы R и — Я, при-ложенпые в точке О, получим, что заданная система сил эквивалентна одной силе  [c.109]

X. е. главный вектор и главный момент системы сил (Д -Я) равны нулю. Следовательно, в силу теоремы о равновесии произвольной системы сил рассматриваемая система является уравновешенной. Согласно условию (а) систему (Р) заменим эквивалентной системой (Ф). Тогда сноэа имеем уравновешенную систему сил Фи Фг,. .., Фш, -Ри -Ръ . .., — Р )сч)0. По теореме о равновесии, главный вектор и главный момент последней системы должны быть равными нулю. Тогда, используя (б), получаем = p + =  [c.56]

Статика твердого тела. Определение момента. В статике силу, действующую на твердое тело, определяют заданием 1) некоторой прямой, вдоль которой сила действует, 2) величины силы и 3) направления действия в ту или другую сторону этой прямой, но указание на прямой точки, к которой приложена сила, не обязательно, так как ее положение на прямой безразлично. Далее предполагается, что две силы вдоль пересекающихся. прямых эквивалентны одной силе, которая получается по правилу сложения векторов. Также предполагается, что равные и обратно направленные, действующие вдОль одной и той же прямой силы, взаимно уравновешиватот друг друга. Вместо перечисления всех этих свойств можно просто сказать, что сила имеет свойства скользящего вектора . На основании указанной в 6 аналогии существует полное соответствие между учением о системах сил и кинематической теорией бесконечно малых перемещений твердого тела. На основании этой аналогии можно формулировать ряд теорем статики без каких-либо доказательств, но рместе с тем поучительно рассмотреть эти теоремы с новой точки зрения, тем более что в историческом порядке статические теоремы предшествовали.  [c.37]

Приведение системы сил в пространстве трех измерений. Теорема Пуаисо. Последовательное применение тех положений, которые были указаны в начале 14, позволяет заменить данную систему сил другой эквивалентной ей системой самым различным образом. Но при таком приведении системы, при всех последовательных преобразованиях сохраняются неизменными как геометрическая сумма сил, так и геометрическая сумма моментов сил относительно какой-либо данной оси. Для дальнейшего будет полезно предположить, что при помощи многоугольника сил или иным путем нами уже построен свободный вектор R, представляющий по величине и направлению геометрическую сумму данных сил. Мы будем пока предполагать, что R отличен от нуля.  [c.38]

Известно, что-если V Q и Ф О, то систему си.л можно привести к равнодействующей силе R. Ддк этого изобразим пару сил, соответствующую главному моменту тд, так чтобы силы, входящие в состав пары сил, равнялись по модулю силе V, причем одна из них (F ) лежала бы на одной линии действия с силой V и была направлена ей противоположно. При этом вторая сила, входящая в состав пары сил, приложенная к точке окажется векторно равной силе V. Плечо пары h = АК следует подобрать так, чтобы момент этой пары сил был равен главному моменту, т.е. = Vh, откуда й - АК m jV. Воспользовавшись формулами (1) и (2), находим Л aj2. Теперь мы получили систему, состоящую из трех сил. Модуль каждой из этих сил равен модулю главного вектора F. Две силы, приложенные в точке А, равные по модулю и направленные в противоположные стороны по общей ЛИ1ШИ действия, уравновешиваются. Эти силы можно отбросить, не нарушая состояния твердого тела. Остается одна сила V, приложенная к точке К, эквивалентная данной системе сил. Следовательно, эта сила, равная главному вектору V, является равнодействующей R. Таким образом, данная система из трех сил статически эквивалентна одной силе, равнодействующей  [c.73]

Стернберг доказал следующие предложения 1) т>-2, если главный вектор системы сил на рассматриваемом участке отличен от нуля 2) m >-3, если он равен нулю, а также в случае статически эквивалентной нулю системы сил (то есть и при обращении в нуль также и главного момента) ш > 4, если система сил на участке сверхстатическая.  [c.246]

Решение задачи приведения сил дает следующий основной резу, 1ьтат любая система сил, действующих иа абсолютно твердое тело, эквивалентна одной силе, равной главному вектору Н системы и н 1Иложеппой в нронзвол лю выбранном цент]1е О, и одной паре спл с моментом, равным главному моменту системы относительно этого центра. Отсюда следует, что любую систему действующих на твердое тело сил можно задать ее главным вектором и главным моментом—результат, к-рым широко пользуются на практике нри задании, напр,, аэродинамич. сил, действующих на самолет или ракету, усилий в сечеиии балки и др.  [c.67]


Смотреть страницы где упоминается термин Сила — вектор. Система сил. Эквивалентность сил : [c.45]    [c.60]    [c.110]    [c.42]    [c.242]    [c.29]   
Смотреть главы в:

Основы технической механики  -> Сила — вектор. Система сил. Эквивалентность сил

Основы технической механики Издание 2  -> Сила — вектор. Система сил. Эквивалентность сил



ПОИСК



В эквивалентное

Векторы эквивалентные

Силы вектор

Силы эквивалентные

Система векторов

Система сил эквивалентная

Системы векторов эквивалентные

Эквивалентность пар

Эквивалентность систем векторов

Эквивалентность системы сил



© 2025 Mash-xxl.info Реклама на сайте