ПОИСК Статьи Чертежи Таблицы Доказательство. Пусть дана сила приложенная в точке А (рис. 43). Затем возьмем систему, состоящую из силы Рд, приложенной в произвольной точке В, равную по модулю силе Р , ей параллельной и одинаково с ней направленной, и, кроме того, возьмем пару с векторным моментом т = в(Руд- Тогда по теореме об эквивалентности; Р с Рд и паре с моментом th — Йд(Р , так как равны главные векторы этих систем и их главные моменты относительно точки В. Теорема доказана. Модуль IHb(P = P h. Плоскость пары т лежит в плоскости сил P, и Р . Произвольная пространственная система сил эквивалентна одной силе, приложенной в произвольно выбранном центре приведения О и равной главному вектору системы и одной паре, момент которой равен главному моменту [Выходные данные]