Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частные случаи плоской системы сил

Результат, полученный в 12, справедлив, конечно, и в частном случае плоской системы сил. Следовательно, плоская система сил тоже приводится к силе, равной R и приложенной в произвольно выбранном центре О, и паре с моментом Мо, но сила и пара лежат в данном случае в одной плоскости — в плоскости действия сил (рис. 47, а, где пара изображена дуговой стрелкой). Значения главного вектора R и главного момента Мо даются формулами (21) и  [c.44]


В частном случае плоской системы сил момент пары рассматривают как алгебраическую величину и считают положительным, если силы пары стремятся повернуть плечо против вращения стрелок часов, если же силы пары стремятся повернуть плечо по ходу часов, то момент считают отрицательным (рис. 41).  [c.65]

В частном случае плоской системы параллельных сил можно сформулировать другую форму условий равновесия этой системы сил для равновесия плоской системы параллельных  [c.53]

В частном случае плоской системы параллельных сил можно сформулировать другую форму равновесия этой системы сил для равновесия плоской системы параллельных сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы алгебраических моментов сил относительно двух любых точек, лежащих в плоскости сил, равнялись нулю, т. е.  [c.50]

Мы можем, конечно, проецируя силы на различные оси и составляя уравнения моментов относительно различных центров, написать сколько угодно уравнений, но независимыми из них будут только три для общего случая плоской системы и только два для частных случаев плоской системы—сходящихся или параллельных сил.  [c.102]

I. ЧАСТНЫЕ СЛУЧАИ ПРИВЕДЕНИЯ ПЛОСКОЙ СИСТЕМЫ СИЛ  [c.48]

В частном случае, если все силы плоской системы параллельны, то условия равновесия (20) таких сил выражаются не тремя, а двумя уравнениями  [c.48]

Поэтому при решении таких задач эту силу разлагают на две составляющие, направленные по координатным осям. Из задач этой группы следует особо отметить важный частный случай, а именно система состоит из двух тел с тремя шарнирами, из которых два являются неподвижными опорными шарнирами, а третий соединяет эти два тела между собой, например, в случае трехшарнирной арки (рис. 44). Рхли трехшарнирная арка находится в равновесии под действием плоской системы сил, то можно составить всего шесть уравнений  [c.65]

Все возможные частные случаи приведения плоской системы сил к данной точке представлены в следующей таблице  [c.79]

Однако число уравнений равновесия уменьшается в частных случаях систем сил. Наиболее характерные среди г.их плоская система сил или силы расположены в одной плоскости, которую выберем за плоскость XY, тогда уравнения (82.71) примут вид  [c.123]

Если же в результате приведения произвольной плоской системы сил окажется, что а Мо =0, то в этом частном случае эта систе-  [c.84]

Рассмотрим частные случаи приведения плоской системы сил.  [c.60]

Остановимся на частных случаях приведения произвольной плоской системы сил.  [c.53]


С теоремой об изменении кинетической энергии системы связано определение уравновешенной системы сил, действующих на абсолютно твердое тело система сил называется уравновешенной, если она своим действием не изменяет кинетическую энергию твердого тела на его произвольных малых перемещениях. Отсюда и из теоремы об изменении кинетической энергии системы вытекают необходимые и достаточные условия уравновешивания систем сил, действующих на абсолютно твердое тело равенство нулю главного вектора и главного момента сил относительно произвольного центра. Как частные случаи из них получаются условия уравновешивания систем сходящихся сил, систем сил параллельных в пространстве и на плоскости, произвольной плоской системы сил.  [c.70]

Равнодействующая пространственной системь сходящихся сил так же, как и в случае, когда сходящиеся силы лежат в одной плоскости, равна геометрической сумме слагаемых сил, т. е. выражается по величине и направлению замыкающей стороной силового многоугольника, стороны которого равны и параллельны данным силам. Следовательно, R = Fi. В частном случае, когда число слагаемых сил, не лежащих в одной плоскости, равно трем, их равнодействующая выражается по величине и направлению диагональю параллелепипеда, построенного на этих силах. Силовой многоугольник, построенный для пространственной системы сходящихся сил, не является плоской фигурой. Поэтому при сложении сил, не лежащих в одной плоскости, предпочтительнее аналитический способ.  [c.11]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Плоскую систему сил можно привести к более простой системе сил, состоящей из силы или пары сил. Эти случаи возможны, если система сил не находится в равновесии, т. е. если одновременно не равняются нулю главные вектор и момент системы сил. Рассмотрим эти частные случаи.  [c.45]

Как известно (см. первую главу), основные граничные задачи плоской теории упругости для тел с разрезами сводятся к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. В некоторых частных случаях граничных контуров 70, 95] (круговая граница, бесконечная прямолинейная граница, система коллинеарных разрезов) возможно понижение порядка этой системы уравнений, что позволяет более эффективно находить ее численное решение. В данной главе (см. также работы 59, 60]) получены модифицированные таким образом сингулярные интегральные уравнения, когда в рассматриваемой области имеется прямолинейная конечная или полубесконечная треш,ина. (Случай конечной прямолинейной треш,ины рассмотрен в работах [58, 104].) Указанный подход, когда граничное условие на прямолинейной треш,ине выполняется тождественно, позволяет не только эффективнее находить численное решение задачи, но и сравнительно просто изучать действие сосредоточенных сил и разрывных нагрузок на берегах трещины, а также рассматривать краевые разрезы. Решение задач для областей с прямолинейной тре-Ш.ИНОЙ представляет особый интерес в механике разрушения (определение /С-тарировочных зависимостей для опытных образцов с трещинами, развитие трещин около концентраторов напряжений).  [c.102]


Приведение к случаю отсутствия объемных сил. Решение уравнений плоской теории упругости значительно упрощается в случае отсутствия объемных сил, т. е. когда X — У = 0. С другой стороны, общий случай всегда можно свести к этому последнему для этого достаточно найти одно какое-нибудь частное решение системы уравнений (1),  [c.98]

Частные случаи плоской системы сил. Пусть рассматривается равиовеспе твердого тела иод действием плоской системы СОЛ. Для кaл дoи системы сил мы имеем определенное число уравнений равновесия. В общем случае плоской системы сил таких уравиенпй три, п они могут быть представлены в трех различных видах (см. и. 2.1). Рассмотрим те-nej)b два частных случая.  [c.65]

Принцип решения задач первого типа остается тем же, что и для произвольной плоской системы сил. Установив, равновесие какого тела будет рассматриваться, отбрасывают наложенные на тело связи, заменяют их действие на тело соответствующими силами реакций и составляют уравнения равновесия этого тела, рассматривая его как свободное. Задачи этого типа решаются при помощи шести уравнений равновесия (в частном случае, когда все заданные силы и реакции связей параллельны, имеем три уравнения равновесия). При составлении уравнений равновесия для определения проекций сил иа координатные оси нужно восполь.зоваться указаниями, данными в 24.  [c.190]

Частные случаи приведения плоской системы сил. Теорема Вариньояа  [c.53]

Система сил, произвольно расположенных иа плоскости (плоская система сил). Алгебраическая величина момента силы. Вычисление главного вектора и главного момента плоской системы сил. Частные случаи приведения п.чоской системы сил приведение к па-  [c.5]

Г. В том частном случае, когда все заданные силы являются силами тяжести, мы имеем V = MgZ . В частности, если система имеет одну степень свободы и является плоской фигурой, движущейся в своей плоскости Оху, то надо исследовать траекторию Г ее центра тяжести 1) найти прежде всего те ее точки, в которых касательная к Г горизонтальна 2) если в такой точке кривая Г направлена вогнутостью вверх, то имеем минимум ординаты центра тяжести, т. е. минимум потенциальной энергии, и по теореме Лагранжа —Дирихле равновесие устойчиво 3) если в точке М вогнутость направлена вниз (случай максимума), или если имеем точку перегиба, то по теоремам Ляпунова можно утверждать, что равновесие неустойчиво, если разложение ординаты у точки С в окрестности точки М в ряд Маклорена по степеням обобщенной координаты qi начинается с члена, содержащего q, — в противном случае необходимо рассмотрение  [c.499]

Введение. Поведение решений теории пластичности вблизи поверхностей трения, на которых удельные силы трения при скольжении равны пределу текучести при чистом сдвиге (условие максимального трения), обладает рядом характерных особенностей, которые, с одной стороны, могут приводить к трудностям при решении краевых задач, а с другой стороны, могут быть использованы для описания физических процессов в тонких слоях вблизи поверхности трения. По-видимому, первое исследование поведения решений в окрестности поверхностей максимального трения было выполнено в [1]. В этой работе была рассмотрена плоская деформация идеальножесткопластического материала, и анализ был основан на методе характеристик. Из результатов этой работы следует, что вблизи поверхности трения сдвиговая скорость деформации (в системе координат, связанной с поверхностью трения) и эквивалентная скорость деформации стремятся к бесконечности обратно пропорционально корню квадратному из расстояния до поверхности трения. Такое поведение поля скорости может быть получено из непосредственного анализа многих аналитических решений, начиная с известной задачи Прандтля (решение этой задачи можно найти в любой книге по теории пластичности, например [2]). Такое же поведение поля скоростей имеет место в осесимметричных решениях. Одно из наиболее известных решений — течение в бесконечном сходящемся канале [3]. Однако в случае осесимметричной деформации уравнения, вообще говоря, не являются гиперболическими (за исключением теории, основанной на условии текучести Треска, и других подобных теорий), хотя изолированные характеристические поверхности могут существовать [4]. Вследствие этого подход, развитый в [1], не мог быть применен для осесимметричных и пространственных задач. В [5-8] был использован другой подход для асимптотического анализа поля скоростей вблизи поверхностей максимального трения для различных условий течения и гладких условий текучести. Во всех этих работах получено, что закон поведения эквивалентной скорости деформации такой же, за исключением некоторых частных случаев, как и при плоской деформации. В [9 аналогичный результат был получен для осесимметричного течения материала, подчиняющегося условию текучести Треска.  [c.78]


Смотреть страницы где упоминается термин Частные случаи плоской системы сил : [c.320]    [c.60]    [c.596]   
Смотреть главы в:

Теоретическая механика  -> Частные случаи плоской системы сил



ПОИСК



К п частный

Система сил, плоская

Частные случаи

Частные случаи приведения плоской системы сил

Частные случаи приведения плоской системы сил к точке Условие равновесия

Частные случаи приведения плоской системы сил. Теорема Вариньона

Частные случаи систем сил

Частный случай



© 2025 Mash-xxl.info Реклама на сайте