Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодное растворение

Рис. 6.2. Пассивирующие пленки на олове. Кривые изменения потенциала во времени при катодном растворении пленок Рис. 6.2. <a href="/info/130912">Пассивирующие пленки</a> на олове. Кривые изменения потенциала во времени при катодном растворении пленок

Рис. б. Зависимость максимального тока растворения пленки Се(0Н>4 от концентрации ионов в растворе и вольтамперные кривые катодного растворения пленки  [c.129]

Исходя из этих данных можно предполагать, что поскольку скорость катодного растворения является функцией плотности тока и потенциала, то в какой-то степени это явление имеет электро-  [c.81]

Коррозия является самопроизвольным процессом разрушения металлов в отличие от не называемого коррозией преднамеренного разрушения металлов при их растворении в кислотах (с целью получения солей), в гальванических элементах (с целью получения постоянного электрического тока), при анодном растворении в электролизерах (с целью последующего катодного осаждения металла из раствора) и т. п. Причина коррозии металлов — химическое или электрохимическое взаимодействие с окружающей средой — отграничивает коррозионные процессы от процессов радиоактивного распада металлов и от эрозии — механического разрушения металлов (при шлифовке металлов или износе трущихся деталей машин).  [c.8]

Потенциалы некоторых металлов в водных растворах (Hg, Ag, Си, d и др.) в довольно широком диапазоне концентраций их ионов достаточно хорошо подчиняются уравнению (277). Если же наряду с разрядом ионов данного металла протекает необратимо какой-либо другой катодный процесс (например, разряд водородных ионов, ионизация кислорода и др.), то начинает идти растворение металла (Дт 0) и потенциал последнего перестает быть обратимым.  [c.157]

Возможность подразделения процесса растворения металлов в электролитах на два сопряженных процесса — анодный и катодный — облегчает в большинстве случаев его протекание по сравнению с химическим взаимодействием. При электрохимическом взаимодействии окислитель играет лишь роль деполяризатора, отнимающего валентные электроны металла и обеспечивающего переход металла в ионное состояние, но не вступает с ним при этом в химическое соединение [вторичные процессы и продукты коррозии при электрохимическом механизме коррозии металлов могут иметь место (см. с. 212), но они не обязательны].  [c.181]

Процессы коррозии металлов, в которых катодная деполяризация осуществляется растворенным в электролите кислородом по реакции (342), называют процессами коррозии металлов с кислородной деполяризацией.  [c.230]

Теория замедленного разряда приложима ко всем электрохимическим процессам с замедленной электрохимической стадией разряда или ионизации и изложена выше (см. с. 198) применительно к процессу растворения металла. Именно при изучении катодного процесса разряда водородных ионов и его поляризации складывались основные положения электрохимической кинетики электродных процессов.  [c.253]


Катодные металлические покрытия (электродный потенциал которых в данных условиях положительнее потенциала защищаемого металла) в условиях активного растворения основного  [c.319]

Таким образом, для основного металла при его коррозии в обычных условиях (растворении в активном состоянии) катодные контакты могут быть опасными, а анодные — защитными.  [c.358]

Эффективность вредного влияния (ускоряющего действия) катодного контакта на коррозию основного металла в обычных условиях активного растворения зависит а) от природы металла (его обратимого электродного потенциала в данных условиях и поляризуемости электродных процессов) и б) от величины по-  [c.358]

Значительная доля растворения ряда металлов и сплавов в кислотах по химическому механизму ограничивает эффект катодной электрохимической защиты этих металлов. Как показали  [c.366]

Электрический ток, протекающий через электролит, в котором находится металлическая конструкция (например, в морской воде или во влажном грунте), влияет на скорость и характер распределения коррозионного разрушения, так как он попадает на металлическую конструкцию и затем стекает в электролит. Если электрический ток постоянный, то участки металла, где положительные заряды (катионы) выходят в электролит, являются анодами (см. рис. 132, к) и подвергаются электрокоррозии — дополнительному растворению, пропорциональному этому току. Участки, где положительные заряды переходят из электролита в металл, являются катодами, на которых протекает катодный процесс, что в какой-то степени снижает скорость их коррозионного разрушения. Примером электрокоррозии металлов может служить местное коррозионное разрушение подземных стальных трубопроводов блуждающими постоянными токами, возникновение и механизм действия которых схематически показаны на рис. 260.  [c.367]

Схема возникновения и механизма действия блуждающих токов была приведена на рис. 260. Блуждающие токи обусловлены утечками тягового тока с рельсов электротранспорта, работающего на постоянном токе. Почва является при этом шунтирующим проводником и в зависимости от величины электросопротивления рельсов и грунта ток, иногда весьма значительной силы (до десятков и сотен ампер) проходит по земле. Встречая на своем пути подземное металлическое сооружение (например, трубопровод или кабель) ток входит в него (в этой зоне имеет место катодный процесс, который приводит к подщелачиванию грунта, а иногда и выделению водорода) и течет по нему, пока не встретятся благоприятные условия его возвращения на рельсы. В месте стенания тока с сооружения происходит усиленное анодное растворение металла, прямо пропорциональное величине тока. Блуждающие токи имеют радиус действия до десятков километров в сторону от токонесущих конструкций, например, рельсовых путей.  [c.390]

Возникновение локальных пар окалина—металл имеет большое практическое значение для коррозионной стойкости стальных конструкций не только в морской воде. Так, понтоны сплоточных машин, изготовленные из листов низкоуглеродистой стали без предварительного снятия окалины, за работу в течение двух навигаций на Северной Двине подверглись значительной местной коррозии с глубиной отдельных язв до 1,5—2 мм. Причиной этого быстрого коррозионного разрушения металла понтонов, как установил М. Д. Мещеряков, явилось наличие на стали окалины. В результате повреждения окалины в отдельных местах возникли гальванические пары, в которых роль катода играла окалина, а роль анодов — отдельные свободные от окалины участки металла. Большая катодная поверхность (покрытая окалиной) и сравнительно малая поверхность анодов (участков, свободных от окалины) и приводит к усиленному анодному растворению металла в местах с удаленной или поврежденной окалиной.  [c.400]

Нарушение равновесия (713) при наличии другого катодного процесса может также привести к растворению (коррозии) металла это происходит с металлами в расплавах солей в присутствии дополнительных катодных деполяризаторов (окислителей). При этом устанавливается необратимый электродный потенциал металла, устойчивое значение которого во времени принято называть стационарным электродным потенциалом.  [c.408]


В первом случае коррозионные процессы получили название коррозии металлов с водородной деполяризацией, во втором— коррозии металлов с кислородной деполяризацией. Иногда оба катодных деполяризующих процесса протекают одновременно и параллельно, например при коррозии железа в разбавленных растворах серной или соляной кислоты в присутствии растворен-  [c.38]

Если в электролите имеется какой-либо окислитель, способный восстанавливаться па данном катодном материале, то он может, наряду с кислородом, принимать участие в процессе деполяризации катода. Обычно в большинстве случаев коррозии основным катодным деполяризатором является растворенный в электролите кислород воздуха.  [c.46]

Пленки содержат поры, в которых может происходить анодный процесс растворения металла. Торможение этого процесса может произойти как в результате увеличения затруднений (из-за образования пленки) в протекании сопутствующего катодного процесса, так и в результате непосредственного торможения процесса перехода ионов металла в раствор.  [c.63]

Для случая катодного растворения FeзO J уравнения (2), (3) имеют вид  [c.17]

Когда Прайэр помещал тот же самый порошок окиси на ртутный электрод (фиг. 53) и соединял сосуд с помощью мостика из фильтровальной бумаги (через промежуточный сосуд) с другим сосудом, содержащим кислоту, в которую погружался кусок железа, соединенный электрически со ртутью, то наблюдалось очень сильное разрушение пленки железо в правом сосуде работает как анод короткозамкнутой ячейки, а ртуть с окислом железа на ней — как катод катодная реакция может рассматриваться как процесс образования дефектов решетки в окисле Ре +, так что растворение происходит легче. В такого рода опытах ионы Ре + появлялись.в левой части при катодном растворении окисла Ре + и в правой части при анодном разрушении железа. Ячейка, изображенная на фиг. 53, действительно представляет собой модель локального элемента, действующего каждый раз при разрыве пленки из окиси Ре + на окисленном железе (фиг. 54). Несплошность пленки показана на диаграмме как вполне четкий разрыв в пленке, но практически может быть просто место, где структура окисла будет иметь достаточные дефекты, для того чтобы начался быстрый переход катионов железа в кислоту. Помещая миллиамперметр,  [c.214]

Пленка оксида покрывает капли расплавленного металла и препятствует сплавлению их между собой и основным металлом. Для разрушения и удаления пленки и защиты металла от повторного окисления при сварке используют специальные флюсы или ведут сварку в атмосфере инертных газов. Флюсы состоят из смеси хлористых и фтористых солей щелочноземельных металлов (Na I, K I, Ba Ij, LiF, aFj и др.). Действие флюсов основано на растворении пленки оксидов. При сварке в защитных газах пленка разрушается в результате электрических процессов в том случае, если она оказывается в катодной области дуги. Это реализуется при сварке плавящимся электродом на постоянном токе обратной полярности и сварке не-плавящимся электродов на переменном токе с использованием специальных источников тока (см. разд. 5, гл. II, п. 6).  [c.236]

А. Н. Фрумкин (1932 г ), Вагнер и Трауд (1938 г.). Я- В. Дурдин (1939 г.), А И. Шултин (1941) г.. Я- М. Колотыркин (1946 г.) и ряд других исследователей считают, что анодный и катодный процессы могут происходить на одном и том же участке металлической поверхности, чередуясь во времени. Этот гомогенный путь протекания электрохимической коррозии металлов вытекает из приведенной выше теории необратимых (стационарных) потенциалов металлов и может иметь преобладающее значение при растворении амальгам и особо чистых металлов.  [c.177]

Эффект растет с ростом Як и уменьшается с ростом металла Полное подавление работы микро-нар достигается при V = (Ул1е)обр. что возможно при катодной поляризации металла как от внешнего источника постоянного тока, так и при помощи анодного протектора, при этом обычно (/к)онешн>/о Эффект имеет большое практическое значение и используется для уменьшения или полного прекра-ш,ения электрохимической коррозии защищаемой конструкции с переносом растворения на менее ценную конструкцию (протектор или дополнительный анод)  [c.296]

Поры закрываются вследствие образования пленки окислов и снова возникают в других местах, где происходит растворение пленкн или ее катодное восстановление. Явление пассивности, по теории Г. В. Акимова, представляет собой динамическое равновесие между силами, создающими защитную пленку (окислителями, анодной поляризацией), и силами, нарушающими ее сплошность (водородными и галоидными ионами, катодной поляризацией и др.).  [c.307]

Из рис. 216 следует, что если полностью запассивированный металл катодно заполяризовать до потенциала, отрицательнее Vn. п металл переходит в активное состояние. Эта активация металла может быть обусловлена а) подщелачиванием электролита у поверхности металла при катодной поляризации, приводящим к растворению защитной окисной пленки AljOg б) катодным восстановлением окисных пленок (на Си, Ni, Fe) в) механическим разрушением защитной пленки, выделяющимся при катодной поляризации газообразным водородом.  [c.320]

Зависимость скорости коррозии железа и углеродистых сталей от концентрации хлоридов и сульфатов нейтральных растворов имеет вид кривых с максимумом (см. рис. 242), зависящим от природы растворенной соли. С ростом концентрации солей увеличивается концентрация ионов хлора, сульфата и аммония, активирующих и облегчающих анодный прйцесс, и уменьшается растворимость деполяризатора кислорода (см. рис. 162), что затрудняет протекание катодного процесса. В каком-то интервале концентраций сильнее сказывается первый эффект, а затем преобладает второй.  [c.345]

Н. П. Жук, Г. Г. Пенов и А. П. Ботнева, комбинированная катодно-ингибиторная защита (У = 0,55 В, 5 г/л катапина А) позволяет достигнуть полной защиты железа от коррозии в соляной кислоте при наличии значительной (до 26%) доли растворения железа по химическому механизму.  [c.366]


Катодными деполяризаторами в расплавленных солях, согласно Н. И. Тугаринову и Н. Д. Томашову, могут быть растворенный в расплаве кислород, вода необезвоженного расплава, ряд способных к восстановлению ионов расплава (Са " , Fe ) и другие вещества, способные к ассимиляции электронов на поверхности корродирующего в расплаве металла по реакциям  [c.408]

Сопряженность анодной и катодной электрохимических реакций при растворении металлов и протекание их на различных участках корродирующей поверхности напоминает работу гал1>-ваиических элементов. Принципиальная схема электрохимического растворения металлов приведена на рис. 9, хотя в некоторых случаях электрохимическая коррозия может носить гомогенноэлектрохимический характер, без резкого различия анодных п катодных участков (например, растворение амальгам).  [c.18]


Смотреть страницы где упоминается термин Катодное растворение : [c.21]    [c.21]    [c.23]    [c.25]    [c.112]    [c.403]    [c.16]    [c.17]    [c.30]    [c.20]    [c.617]    [c.16]    [c.17]    [c.17]    [c.353]    [c.261]    [c.280]    [c.284]    [c.293]    [c.344]   
Смотреть главы в:

Коррозия и защита от коррозии  -> Катодное растворение



ПОИСК



V катодная

Особенности катодного восстановления и анодного растворения селена

Растворение



© 2025 Mash-xxl.info Реклама на сайте