Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятия об измерениях и их единицах

Понятие об единицах измерений  [c.322]

Поскольку эффективное сечение рождения пары зависит ог заряда ядра элемента так же, как сечение радиационных потерь заряженных частиц, здесь тоже применимо понятие радиационной единицы длины для измерения пути в веществе.  [c.154]

Кюри (с) есть количество радона (0,66 мм при 0° С и 760 мм), находящееся в радиоактивном равновесии с 1 г радия. Международная комиссия радиевых стандартов в 1930 г. рекомендовала расширить понятие этой единицы с тем, чтобы включить в нее также и равновесные количества любого продукта распада радия, как, например, полония. Таким образом, 1 с Ро есть 2,24 10 г Ро, т. е. количество Ро, имеющее ту же интенсивность излучения а-частиц, что и 1 г радия. Абсолютные величины скорости распада радия измерялись многими способами, дававшими значения, лежащие между 3,40 и 3,72, причем более поздние измерения указывают на то, что истинные значения, вероятно, находятся вблизи (3,67 d= 0,03)-а-частиц в 1 сек. на 1 г радия. Комиссия рекомендовала пользоваться произвольным значением 3,7 101 до тех пор, пока не будет достигнуто соглашение относительно третьего десятичного знака.  [c.25]


Следует различать три разных понятия размер единицы измерения, единицу измерения и размерность величины.  [c.12]

Термин пли понятие Толкование Единицы измерения  [c.17]

Приведенное определение понятия измерение удовлетворяет общему уравнению измерений, что имеет существенное значение в деле упорядочения системы понятий в метрологии. В нем учтена техническая сторона (совокупность операций), раскрыта метрологическая суть измерения (сравнение с единицей) и показан гносеологический аспект (получение значения величины или информации о нем).  [c.21]

В литературе встречаются понятия абсолютные единицы ,, ,абсолютные измерения . Слово абсолютные приписывалось рассматриваемым единицам или измерениям физических величин в том случае, если они основывались соответственно на основных единицах (метре, килограмме, секунде) или основных величинах (длине, массе, времени). Среди единиц СИ нет абсолютных единиц, поэтому сейчас отпала необходимость в применении понятия абсолютное измерение в первоначальном значении.  [c.23]

Понятие о единицах измерения радиометрических и фотометрических величин дано в Приложении 4,  [c.190]

Для технологических документов принято понятие не единицы измерения , а единицы величины (в соответствии с требованиями общесоюзного классификатора единиц величины и счета).  [c.32]

Основные понятия и единицы измерений. Электрический ток представляет собой перемещение по проводнику электрических зарядов. При протекании тока через металлический проводник носителями заряда являются электроны. Электрон представляет собой первичное, предельно малое количество электричества с отрицательным зарядом. За единицу количества электричества или электрического заряда в практической системе единиц принят 1 кулон, соответствующий по заряду 6,3.10 электронов.  [c.179]

В заключение отметим, что необходимо различать понятия размерность величины и единица ее измерения. Размерность определяется только видом уравнения, выражающего значение данной величины, а единица измерения зависит еще от выбора основных единиц. Например, если, как это принято, обозначать размерность длины, времени и массы соответственно символами L, Т к М, то размерность скорости ит, а единицей измерения может быть 1 м/с, 1 км/ч и т. д.  [c.184]


Необходимо различать понятия размерность величины и единица ее измерения.  [c.285]

Совокупность фотометрических понятий и величин, установленных в качестве единиц для соответствующих измерений, даст возможность охарактеризовать действие света на наши приборы и установки.  [c.55]

Таким образом, понятие длины движущегося стержня приобретает смысл ТОЛЬКО тогда, когда указано, в какой инерциаль-ной системе измеряется эта длина. Значение длины стержня (точнее, число единиц длины в стержне) максимально в той системе координат, в которой стержень покоится во всех остальных системах это значение меньше. В этом нет ничего парадоксального, так как уменьшение длины происходит вследствие того, что меняется способ ее измерения. Конечно, не может быть и речи о каком-то изменении физического состояния стержня оно одно и то же во всех инерциальных системах.  [c.456]

Необходимо обратить внимание и на то, что в ряде случаев не делается различия между понятиями физические константы и еще более обобщенным термином универсальные, фундаментальные или мировые константы. Покажем это на ряде примеров. Первым из них является претенциозное название табл. 2. Так же просто трактуется вопрос в [16] ...принято считать, что универсальные, или мировые, фундаментальные — все три термина употребляются обычно как синонимы... В превосходной монографии [17], к сожалению, читаем, что коэффициенты пропорциональности, подобные гравитационной или инерционной постоянным и зависящие от выбора основных единиц (системы измерений.— О. С.) и определяющих соотношений, получили название универсальных или мировых постоянных . Анализ физической литературы показывает, что, по всей видимости, термин универсальные постоянные постепенно выходит из употребления, его можно считать устаревшим. Понятие же мировые постоянные , напротив, еще только входит в моду , но чрезвычайно важно отметить, что ему с самого начала придается иной, значительно более вселенский по своему содержанию физический смысл. Приведем в подтверждение этого цитату С современной точки зрения кажется очень удачным, что первые измерения величины с пришли из астрономии — это дало возможность определить скорость света в вакууме, т.е. действительно мировую постоянную [18]. Более подробно эти вопросы обсуждаются в ч. 3.  [c.31]

Однако во многих явлениях такие специальные постоянные, как гравитационная постоянная, скорость света в пустоте или коэффициент кинематической вязкости воды, совершенно несущественны. Поэтому единая универсальная система единиц измерения, связанная с законами тяготения, распространения света и вязкого трения в воде или с какими-нибудь другими физическими процессами, во многих случаях носила бы искусственный характер и была бы практически неудобна. Наоборот, практически в различных разделах физики удобно пользоваться системами единиц измерения с различными основными единицами в соответствии с существом и сравнительной значимостью физических понятий, участвующих в рассматриваемых явлениях.  [c.19]

При исследованиях механических или вообще физических явлений мы вводим, во-первых, систему понятий — величин, характеризующих различные стороны изучаемых процессов (будем называть их просто характеристиками), и во-вторых, систему единиц измерения, с помощью которой определяются численные значения введённых характеристик.  [c.21]

В гл. 6 рассматриваются более подробно вопросы использования солнечной энергии для получения теплоты. В данной главе остановимся только на системах, предназначенных для преобразования солнечной энергии в электрическую. Начнем поэтому с рассмотрения тех характеристик, которые являются наиболее важными при этих процессах, прежде всего— спектр солнечного излучения. На рис. 5.6 показано, как распределена по длинам волн энергия солнечного излучения, падающего в единицу времени на единицу поверхности и приходящегося на единичный интервал длин волн. Спектр, измеренный на верхней границе земной атмосферы, очень хорошо совпадает со спектром излучения абсолютно черного тела при температуре 6000 К. Абсолютно черным телом называется физическое тело, которое излучает энергию во всем спектре и поглощает все падающее на него излучение независимо от длин волн. Таких тел в природе не существует, но существуют тела с очень близкими свойствами. Понятие абсолютно черного тела играет важную роль в физике. Так, решая задачу о распределении излучения абсолютно черного тела по длинам волн, Макс Планк впервые сформулировал принципы квантовой механики. В распределении солнечного излучения по длинам волн, измеренном вблизи поверхности Земли, имеются большие провалы, обусловленные поглощением излучения на отдельных частотах или в отдельных интервалах частот атмосферными газами — кислородом, озоном, двуокисью углерода — и парами воды.  [c.95]


Иногда в научной литературе пользуются понятием приведенного эффективного сечения, которое представляет собой сумму соответствующих эффективных сечений всех атомов или молекул, заключенных в 1 см при температуре 0 °С и давлении 1 мм рт. ст. Так как при таких условиях число молекул в 1 см равно 3,535 10 то приведенное эффективное сечение мы получим, умножив на это число эффективное сечение, измеренное в см или м . Обозначают единицу приведенного эффективного сечения см / (см мм рт, ст.).  [c.316]

Своеобразную логарифмическую величину представляет так называемый водородный показатель pH, характеризующий активность растворов электролитов. Последняя зависит от концентрации ионов в растворе. Однако эта зависимость не вполне однозначна из-за взаимодействия между ионами. Поэтому характеристикой активности концентрация может служить лишь в сильно разбавленных растворах. При больших значениях концентрации вводится понятие эквивалентной концентрации, представляющей собой произведение истинной концентрации на коэффициент активности, меньший единицы. Поскольку как истинная, так и эквивалентная концентрация ионов может изменяться в весьма широких пределах, пользуются логарифмической шкалой. Измеряемый по этой шкале водородный показатель (обозначается pH) равен взятому с обратным знаком логарифму активности или эквивалентной концентрации ионов водорода (измеренной в грамм-эквивалентах на литр). Так как концентрация водорода в воде (и химически нейтральных средах) равна 10" , то для воды pH = 7. В кислых средах концентрация ионов водорода выше и соответственно pH < 7, а в щелочных, наоборот, pH > 7.  [c.345]

Таким образом, понятия размерных и безразмерных величин являются условными. Будем считать, что величины, для коррых единицы измерения одинаковы во всех общепринятых системах единиц измерения, условно называются безразмерными. Величины, для которых в опытах или теоретических исследованиях фактически или потенциально (явно или неявно) допускаются различные единицы измерения, будем называть размерными. При таком определении одни и те же величины в одних случаях можно считать размерными, в других — безразмерными.  [c.148]

Рекомендуется применять в формулах, таблицах и графиках вместо удельного веса понятие плотности (объемной массы) с основной единицей измерения кг/м .  [c.9]

Книга состоит из пяти глав. В первой главе приведены общие положения, касающиеся угловых измерений (единицы, понятия, общие зависимости, ряды и др.), и дана классификация методов измерения у1ГЛ01В. В трех следующих главах описаны средства угловых измерений в соответствии с этой классификацией жесткие угловые меры, тригонометрические и гониометрические средства измерения углов. В ряде случаев было трудно отделять средства от методов измерения и приходилось один вопрос излагать на фоне другого. При анализе методов и средств контроля оценивается их точность. Пятая глава посвящена поверке измерительных средств. Она ведет читателя по поверочной схеме, которая помещена в начале главы, — от эталонного метода до методов поверки рабочих приборов, знакомит с аппаратурой, методикой поверки и аттестации угломерных средств здесь же приведены и некоторые теоретические обоснования.  [c.4]

ШКАЛА ИЗМЕРЁНИЙ—основополагающее понятие ме трологии, позволяющее количественно или к.-л. другим способом определить свойство объекта. Ш. и. является более общим понятием, чем единица физической величины, отсутствующая в нек-рых видах измерений. Ш. и. необходимы как для количественных (длина, темп-ра), так и для качественных (цвет) проявлений свойств объектов (тел, веществ, явлений, процессов). Проявления свойства образуют множество, элементы к-рого находятся в опре-дел. логич. отношениях между собой, т. е. являются т. н. системой с отношениями. Имеются в виду отношения типа эквивалентность (равенство), больше , меньше , возможность суммирования элементов или деления одного на другой. Ш. и. получается гомоморфным отображением множества элементов такой системы с отношениями на множество чисел или, в более общем случае,— на знаковую систему с аналогичными логич. отношениями. Такими знаковыми системами, напр., являются множество обозначений (названий) цветов, совокупность классификац. символов или понятий, множество названий состояний объекта, множество баллов оценки состояний объекта и т. п. При таком отображении используется модель объекта, достаточно адекватно (для решения измерит, задач) описывающая логич. структуру рассматриваемого свойства этого объекта.  [c.465]

При аналого-цифровом преобразовании устанавливается соответствие между преобразуемой величиной и некоторой совокупностью единиц измерения или эталонных мер. Иными словами, это преобразование подпадает под понятие измерение .  [c.255]

Международная система единиц измерений физических величин—единая универсальная система. Она свя-зызает единицы измерения механических, тепловых, электрических, магнитных и других величин. В состав системы входят шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина, свеча), две дополнительные (радиан и стерадиан) и 27 важнейших производных единиц из различных областей науки (табл. 1.1). В государственных стандартах СССР применяется понятие размера единицы, являющегося количественной мерой физической величины, содержащейся в единице измерения. Размер производных единиц определяется законами, связывающими физические величины, и выражен через размер основных или других производных единиц. Например, единица силы ньютон (н) установлена на основе второго закона Ньютона она равна силе, которая сообщает ускорение 1 м сек массе I кг. При выборе размера соблюдается в основном условие когерентности (связности) системы в уравнениях, определяющих единицы измерения производных величин, коэффициент пропорциональности должен быть величиной безразмерной и равен единице.  [c.9]


До недавнего времени теории измерения параметров пространственных полей (ППП) просто не было. Из-за этого нередко при аттестации ИИС возникали большие трудности. Попытка создания такой теории предпринята в монографии проф, ФМИ им, Г.В. Карпенко АН УССР Я.Е. Беленького, ,Измерение параметров пространственных полей" (Киев Наукова думка, 1985), По мнению автора, измерение ППП нельзя отнести к классической процедуре (если рассматривать термин, ,измерение" в его узком смысле), так как понятие размера единицы ППП не определено. Применение теории информации помогает преодолеть трудности проблемы. Любое поле представляется вектором по ортам (единичным векторам) введенных в монографии информативных признаков. Координаты этого вектора и являются параметрами, подлежащими измерению.  [c.105]

Может возникнуть вопрос о том, почему в книге, посвященной л етрологическим основам технических измерений, специальное внимание уделено обобщенным измерениям . В предыдущем раз-.теле были описаны основные особенности традиционных измере- ий, делающие целесообразным объединение столь различных технических операций, проводимых на весьма различающихся бъeктax, — в единое понятие измерение . Повышение эффективности самих измерений работ по их планированию, по разработке и метрологической аттестации МВИ работ по оптимизации методов воспроизведения размеров единиц и их передачи от эталонов рабочим средствам измерений, эксплуатируемым, особенно лри технических измерениях, в жестких условиях повышение эф-  [c.33]

Понятие электрических единиц в то время иногда отождествлялось понятием эталона. Так, для измерения электрического сопротивления Э. X. Ленц (1838 г.) пользовался единицей, реализованной в виде эта-иона, имевшего характер калиброванной медной проволоки длиной 1 фут, взятой из сортамента того времени (проволока 11). В 1848 г. Якоби создал нормальный эталон сопротивления, который получил распространение во многих лабораториях России и Европы и имел та-г(ое внешнее оформление, которое соответствует нашим современным яредставления.м об эталоне. Единица сопротивления Якоби изготовлялась в виде катушки медной проволоки длиной 25 футов весом .22,5 г и диаметром 0,67 мм, помещенной в специальный ящичек и залитой изолирующим составом. Эталоны этой единицы изготовлялись серийно.  [c.273]

Единицей измерения количества вещества в международной системе единиц СИ является моль, а единицей массы — кг. Поэтому если говорится о количестве вещества, то имеется в виду число молей, если же о массе — то число килограммов вещества. Перед использованием понятия моль предварительно необходимо указать структурные единицы веществ, принятые за основу расчета их количеств, так как по определению моль равен количеству вещества в системе, содержащей столько же структурных единиц вещества, сколько атомов содержится в 0,012 кг изотопа углерода-12. (Номенклатурные правила ИЮПАК по химии, т. 1. М., ВИНИТИ, 1979. См. также примечание на с. 18).  [c.12]

Дж. А. Уилер так излагает сущность вопроса Фактически время — это длина, а не независимое от нее понятие. Чтобы уяснить, насколько неверно обычное различие между пространством и временем, представим себе такое-несовместимое применение различных мер длины, когда ширина шоссе измеряется в футах, а его длина — в милях. Однако в такой же степени несовместимо измерение интервалов в одном направлении пространства — времени в секундах, а в трех других направлениях — в сантиметрах. Пересчетный множитель, переводящий одну метрическую единицу длины в пространственных направлениях (см) в другую метрическую единицу тоже длины во вре-менном направлении (с), равен скорости света, числовое значение которой— это 3-10 ° см-с. Но ведь значение этого множителя в такой же мере обусловлено историческими причинами, а по существу случа1л о, как и значение пере-счетного множителя 5280, переводящего футы в мили. Можно обойтись без объяснения множителя 3-10 , точно так же, как нет необходимости объяснять множитель 5280 .  [c.364]

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве ехрег1теп1ит сгис1з для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с константой с максвелловской теории, обозначающей, с одной стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения системы на скорость распространения света и вся обширная совокупность связанных с ним экспериментальных и теоретических проблем привели к формулировке эйнштейновского принципа относительности — одного из самых значительных обобщений  [c.417]

Для характеристики теплового излучения мы воспользуемся величиной потока энергии Ф, т. е. количества энергии, излучаемого в единицу времени (мощность излучения). Поток, испускаемый единицей поверхности излучающего тела по всем направлениям, будем называть испускательной способностью и обозначим через Е. Определенная таким образом испускатель-ная способность соответствует светимости (см. Введение, фотометрические понятия) и иногда называется энергетической светимостью. Наряду с ней можно рассматривать и энергетическую яркость В, определяемую аналогично яркости при фотометрических измерениях. Для черного тела яркость не зависит от направления, так что Е = кВ (см. 7).  [c.687]

Понятие силы в механике имеет научную ценность потому, что ее можно измерять. Измерение силы в механике основано на сравнении сил. Если сравнивать динамическое или статическое проявление силы с проявлением силы, принятой за единицу измерения, то можно произвести динамическое или статическое измерение силы. При этом две сравниваемые силы считают равными, если их действия на тело в одних и тех же условиях одинаковы. За единицу силы в технической системе единиц (МКГСС) принимается сила в один килограмм (1 кГ), в международной же системе единиц (СИ) за единицу силы принимается один ньютон (1 н).  [c.21]

Всякое движение тел совершается в пространстве и во времени. Движение тел в пространстве рассматривается относительно произвольно выбранной системы координат, которая, в свою очередь, связана, с каким-либо телом, называемь1м телом отсчета. Тело отсчета и связанная с ним система координат называются системой отсчета. Пространство в механике рассматривается как трехмерное евклидово пространство. Все измерения в нем производятся на основании методов евклидовой геометрии. За единицу длины при измерении расстояний принимается одни метр. Время в механике считается универсальным, т. е. протекающим одинаково во всех системах отсчета. За единицу времени принимается одна секунда. Время является скалярной непрерывно меняющейся величиной. В задачах кинематики его принимают за независимое переменное. Все другие величины (расстояния, скорости и т. д.) рассматриваются как функции времени. В дальнейшем при изучении кинематики и динамики часто используются понятия момент времени / и промежуток времени А/ . Под моментом времени I будем понимать число единиц из.мерения времени 1 (напри.мер, секунд), прошедших от некоторого начального момента (начала отсчета времени), например, от начала движения. Про.нгжутком времени будем называть число единиц времени At = — П, отделяющих два каких-нибудь  [c.89]


Ha межфазной границе в слое толщиной равном по порядку радиусу межмолекулярных взаимодействий (бт= 10 м), молекулы взаимодействуют не только с молекулами своей фазы, но и с близлежащим слоем молекул другой фазы. Поэтому в этом слое физико-химические свойства вещества и его реакция могут заметно отличаться от свойств этого же вещества и этой же фазы па существенно больших, чем расстояния от межфазной границы, но все еще малых по сравнению с размерами неоднородностей (диаметром капель, пузырьков, частиц, пор и т. д.) расстояниях. В связи с этим, следуя Гиббсу, целесообразно выделять эти очень тонкие поверхностные зоны раздела фаз и рассматривать их отдельно, учитывая, что их толщины чрезвычайно малы по сравнению с размерами в двух других измерениях, а следовательно, малы п их объемы и массы по сравнению с обт,емами неоднородностей (капель, пузырей, частиц и т. д.). Таким образом, приходим к понятию поверхностной фазы, которую будем называть Z-фазой, массой, импульсом и кинетической энергией которой можно пренебречь. Влияние поверхностной фазы в уравнении импульсов сводится к наличию дополнительных усилий (поверхностного натяжения), распределенных вдоль замкнутой линии 6 L, которая ограничивает рассматриваемый элемент межфазной поверхности 6 iSia. Главный вектор этих усилий, отнесенный к единице межфазной поверхности, равен  [c.43]

Общеизвестно, что изложение этих теорий в учебниках и в практике преподавания в высших учебных заведениях обычно страдает многими недостатками как правило, эти вопросы затрагиваются только вскользь и попутно. Основные понятия, даже такие, как понятия размерной и безразмерной величин, вопрос о числе основных единиц измерения и т. п., не выяе-  [c.5]

Таким образом, понятия размерных и безразмерных величин явАются относительными понятиями. Мы вводим некоторый запас единиц измерения. Тогда величины, для которых единицы измерения одинаковы во всех принятых системах единиц измерения, мы будем называть безразмерными. Величины же, для которых в опытах или в теоретических исследованиях фактически или потенциально допускаются различные единицы измерения, мы будем называть размерными. Из этого определения вытекает, что некоторые величины можно рассматривать в одних случаях как размерные, а в других—как безразмерные. Выше мы указали подобные примеры, в дальнейшем мы встретимся с рядом других таких примеров.  [c.14]

Введение такой единственной системы едййиц измерения, исключающей все другие системы единиц, равносильно полному устранению понятия размерности. В единой универсальной системе единиц измерения численные значения всех количественных характеристик определяются однозначно их физической величиной.  [c.19]

Понятию напор можно дать и другое физическое объяснение, исходя из единицы измерения пьезометрическо-  [c.34]

ГОСТ 7664-61 устанавливает три изучаемые в курсах физики системы механических единиц измерения, различающиеся основными единицами МКС с единицами м, кг, сек МКГСС с единицами м, кгс (кГ), сек и СГС с единицами см, г, сек. Первая из них вошла как часть в СИ и рекомендуется как предпочтительная. Эта система последовательно используется в настоящей книге. В связи с этим необходимо обратить внимание на измерение количества вещества, часто встречающееся в расчетах. Как известно из курса физики, количество вещества в теле измеряется его массой,, (в состоянии покоя) и при пользовании системой МКС выражается в кг. Прибором для определения массы тела служат рычажные весы, исключающие влияние географической широты и высоты места взвешивания, что и соответствует понятию массы. Отсюда такие величины, как количество пара в котле, металла в каком-либо агрегате, производительность котла, вентилятора, расход топлива, пара — все эти величины измеряются массой тел, участвующих в изучаемом явлении, и выражаются в кг. Другое понятие вес , которым широко и неточно пользуются в технических расчетах для измерения количества вещества, здесь будет применяться только для определения силы, действующей на опору (площадку) в силу этого понятие еес лучше заменить более правильным — сила тяжести в системе МКС последняя, как известно, измеряется в ньютонах и вычисляется как произведение массы на ускорение силы тяжести в данном месте (второй закон Ньютона) или определяется при помощи пружинных весов, что менее точно. Единица силы системы МКГСС — кгс (кГ) здесь будет использоваться только в допускаемых ГОСТ внесистемных единицах.  [c.19]

Еще тогда, когда ррирода тепловой энергии не была правильно понята, в качестве единицы измерения ее была введена калория. В настоящее время она сохранена как внесистемная единица энергии, причем определением ее служит согласно ГОСТ 8550-61 соотношение  [c.38]

Понятие экспозиционной дозы справедливо для тормозного малучення с энергией фотонов до 3 МэВ. для больших энергий необходимо пользоваться поглощенной дозой в воздухе, выражаемой в греях или специальных единицах измерения поглощенной дозы — радах (I Гр 100 рад I Гр/с == 100 рад/с).  [c.302]

Мы уяге упомянули, что в кинематике время рассматривается как понятие первичное. Отнюдь не вступая поэтому на путь философского анализа этого понятия, мы ограничимся только замечанием, что для измерения времени сама природа так сказать, установила определенные единицы сутки, месяц, год. Экспериментальное установление такой единицы но лунным или солнечным триадам, содержащим точно определенное число суток, месяцев и лет, составляло в течение многих веков главную, если не почти единственную, задачу астрономии. В настоящее время часы, благодаря современному усовершенствованию их устройства, представляют собой инструмент, на практике  [c.89]


Смотреть страницы где упоминается термин Понятия об измерениях и их единицах : [c.23]    [c.9]    [c.178]    [c.226]    [c.74]   
Смотреть главы в:

Основы стандартизации, допуски, посадки и технические измерения  -> Понятия об измерениях и их единицах

Допуски и технические измерения Издание 4  -> Понятия об измерениях и их единицах



ПОИСК



224 — Единицы измерени

Дисбаланс - Единицы измерения 372 - Понятие 372 — Способы устранения

Единицы измерения

ИЗМЕРЕНИЕ РАСХОДА И КОЛИЧЕСТВА ЖИДКОСТЕЙ, ГАЗА, ПАРА И ТЕПЛА Основные понятия и единицы расхода и количества вещества

Измерения Понятие

МЕТРОЛОГИЯ ОСНОВНЫЕ ПОНЯТИЯ И ТЕРМИНЫ МЕТРОЛОГИИ. ВОСПРОИЗВЕДЕНИЕ ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН И ЕДИНСТВО ИЗМЕРЕНИЙ

ОСНОВНЫЕ ПОНЯТИЯ И ТЕРМИНЫ Метрологии, воспроизведение единиц ФИЗИЧЕСКИХ ВЕЛИЧИН И ЕДИНСТВО ИЗМЕРЕНИЙ

Основные понятия и единицы измерений

Понятие об измерении и единицах измерений

Понятие об измерении и единицах измерений

Понятия об измерениях и единицах физических величин



© 2025 Mash-xxl.info Реклама на сайте