Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мера физической величины

Но как мера физической величины д обладает трехкратной однородностью относительно трех независимых мер Ух, дг, дз - если поэтому а, р, суть показатели однородности д относительно д,, дг- 2з > то уравнение (6 ) можно написать в виде  [c.372]

В науке, технике и обыденной жизни мы имеем дело с разнообразными свойствами окружающих нас тел. Эти свойства отражают процессы взаимодействия тел между собой и их воздействие на наши органы чувств. Для описания свойств вводятся физические величины, каждая из которых является качественно общей для многих объектов (физических тел, их состояний, процессов, в которых они участвуют), но в количественном отношении различной для разных объектов. Для того чтобы дать меру физической величине, мы устанавливаем ее единицу. Единица определенной физической величины представляет собой значение данной величины, которое по определению считается равным 1. Операция, с помощью которой мы узнаем числовое значение той или иной величины для определенного объекта, представляет собой измерение этой величины.  [c.11]


Вследствие многозначности понятий, выражаемых словом мера , следует пользоваться краткой формой термина мера только при полной уверенности, что под ним понимается мера физической величины.  [c.31]

Мера физической величины 5.11  [c.101]

Величина т, стоящая множителем при ускорении в основном законе динамики, называется массой. Эта физическая величина характеризует степень сопротивляемости материальной точки изменению ее скорости, т. е. является мерой инертности материальной точки. Следовательно, масса оказывается одной из характеристик движущейся материи (из других характеристик можно назвать протяженность, непроницаемость, упругость и т. д.).  [c.10]

Основной закон позволяет вычислить F через понятие массы материальной точки т и ее движение в инерциальной системе координат (а). Однако этот закон нельзя рассматривать как определение силы F, которая, являясь физической величиной, не зависит от выбора той или иной системы координат и является мерой изменения движения материального обьекта только в узком смысле. Как уже говорилось во введении, сила и масса представляют собой понятия первичные.  [c.49]

При взаимодействии атомов одного сорта с атомами другого сорта характер химической связи определяется их способностью захватывать или отдавать валентный электрон. Эта способность характеризуется так называемой электроотрицательностью атомов X. По существу, электроотрицательность — это параметр, выражающий тенденцию атома притягивать к себе электроны в конкретном твердом теле. Электроотрицательность — относительная мера взаимодействия атомов, она не является строго физической величиной, поскольку она не постоянна и зависит от природы другого атома, с которым химически связан данный атом. Один и тот же атом в химической связи иногда одновременно может выступать и как электроположительный, и как электроотрицательный. Электроотрицательность очень слабо зависит от типа связи и от конкретных особенностей кристаллической структуры, что делает ее некоторым объективным параметром атомов, который полезен при обсуждении свойств твердых тел.  [c.57]

При формулировке всяких физических законов нужно ясно отдавать себе отчет, в какой мере те или иные положения представляют собой утверждения, нуждающиеся в проверке на опыте, и в какой мере они являются лишь определениями новых физических величин. Различать утверждения и определения необходимо потому, что утверждения и определения стоят в совершенно различной связи с опытом.  [c.26]

Масса — скалярная физическая величина, являющаяся мерой инертности тела. Масса тела равна отношению действующей на него силы Р к вызываемому ею ускорению а  [c.32]


Инертность и способность создавать поля тяготения — совершенно различные проявления свойств материи. Поэтому заранее нельзя предполагать, что меру того или другого свойства материи можно выражать одной и той же физической величиной.  [c.106]

Поскольку инертная и гравитационная массы пропорциональны друг другу, то при соответствующем выборе единиц физических величин меру того и другого свойства можно выражать одним и тем же числом. При общепринятом выборе единиц гравитационная и инертная массы тела равны друг другу. В физике поэтому говорят просто о массе тела, подразумевая под этим физическую величину, являющуюся мерой инертных свойств материи и одновременно мерой ее гравитационных свойств  [c.107]

Мера — это средство измерения, предназначенное для воспроизведения физической величины определенного размера, выраженного в принятых единицах. Например, гиря — мера массы, измерительный резистор — мера электрического сопротивления и т. д.  [c.133]

Зависимость (з) — выражение физического закона, поэтому постоянная С является универсальной безразмерной величиной, не зависящей от системы единиц мер. Это значит, что правая часть выражения (и) представляет собой безразмерный комплекс, т. е. каждая из основных размерностей Ь, М, Т, 0, входящих в состав размерностей физических величин правой части соотнощения (и), должна войти в нулевой степени.  [c.285]

Отметим, что любое физическое уравнение по размерности однородно, т. е. обе его части имеют всегда одинаковую размерность независимо от выбора системы физических величин. Это правило относится в полной мере и к еще неизвестным уравнениям.  [c.374]

Мера — средство измерений, предназначенное для воспроизведения физической величины заданного размера.  [c.68]

Систематические ошибки могут существенным образом исказить результаты измерений, однако указать на исчерпывающие правила отыскания систематических погрешностей практически невозможно. В ряде случаев используют специальные способы исключения методических и других погрешностей измерений, некоторые из которых будут рассмотрены в соответствующих разделах, посвященных измерениям конкретных физических величин. Для устранения систематических инструментальных погрешностей средства измерений в обязательном порядке должны проходить поверку в лаборатории мер и измерительных приборов.  [c.7]

Меры — средства измерений, предназначенные для воспроизведения физических величин заданного размера. Различают однозначные и многозначные меры.  [c.104]

Однозначные меры воспроизводят физические величины только одного размера. Физические величины, для которых операция сложения может быть выполнена без затруднений, воспроизводятся наборами мер или магазинами. Примеры наборов мер наборы гирь, набор концевых мер длины, набор мер индуктивности и т. п. В магазинах, в отличие от наборов, меры объединяются в одно устройство, имеющее переключатели и отсчетные устройства.  [c.104]

Многозначные меры могут воспроизводить ряд размеров физических величин (например миллиметровая линейка, конденсатор переменной емкости, вариометр).  [c.104]

Каждая материальная точка, или тело, имеет свой, строго определенный коэффициент пропорциональности — массу точки. Масса материальной точки — физическая величина, характеризующая инертные и гравитационные свойства точки и являющаяся мерой этих свойств. Для свободного падения в пустоте Р = G, где G — сила тяжести а = д-, д 9,81 м/с — ускорение свободного падения, Одинаковое для всех тел. Из (9.1) получаем  [c.94]

Правило приведения к нулевым размерам. Предположим, что мера д некоторой физической величины может быть выражена через меры д , д.,,..., д других физических величин и некоторые другие числа, совокупность которы.х обозначим через г. Это значит  [c.372]


Для того чтобы измерение имело однозначный характер, необходимо, чтобы отношение двух однородных величин не зависело от того, какой единицей измерены эти величины. Подавляющее большинство физических величин удовлетворяет этому условию, которое обычно называют условием абсолютного значения относительного количества. Это условие может быть соблюдено при наличии по крайней мере принципиальной возможности такого количественного сравнения двух однородных величин, в результате которого получается число, выражающее отношение этих величин.  [c.14]

Глубокий анализ этих величин и возможности использования их для оценки прочности межатомной связи, проведенный С. Т. Кишкиным [77], К. А. Осиповым [59], показывает, что нет однозначной количественной зависимости между прочностью кристаллических тел и какой-либо из этих физических величин, принятой за меру межатомной связи. Это обусловлено тем, что прочность является структурно-чувствительным свойством материала в упругой и пластической областях.  [c.9]

Международная система единиц измерений физических величин—единая универсальная система. Она свя-зызает единицы измерения механических, тепловых, электрических, магнитных и других величин. В состав системы входят шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина, свеча), две дополнительные (радиан и стерадиан) и 27 важнейших производных единиц из различных областей науки (табл. 1.1). В государственных стандартах СССР применяется понятие размера единицы, являющегося количественной мерой физической величины, содержащейся в единице измерения. Размер производных единиц определяется законами, связывающими физические величины, и выражен через размер основных или других производных единиц. Например, единица силы ньютон (н) установлена на основе второго закона Ньютона она равна силе, которая сообщает ускорение 1 м сек массе I кг. При выборе размера соблюдается в основном условие когерентности (связности) системы в уравнениях, определяющих единицы измерения производных величин, коэффициент пропорциональности должен быть величиной безразмерной и равен единице.  [c.9]

Естественно, происходит усложнение и парка поверочного оборудования, появляется необходимость создания автоматизированных рабочих мест с применением микропроцессорной и вычислительной техники, комплектных поверочных лабораторий, возимьгх мер физических величин, передвижных сложных поверочных комплексов для осуществления поверки без предварительного демонтажа сложных систем управления и контроля. Это приводит к увеличению затрат на организацию поверки, а в условиях дефицита поверочного оборудования и ограничения численности госпове-рителей требует постоянного анализа поверочной деятельности территориальных органов в рамках критерия стоимость — эффективность .  [c.53]

XI Генеральная конференция по мерам и весам в 1960 г. приняла в качестве единой системы для измерения почти всех физических величин Международную систему единиц, сокращенно обозначаемую латинскими буквами SI (Sistem international). На русском языке эта система единиц обозначается буквами СИ.  [c.9]

Порядок передачи размера единиц физической величины от эталона или исходного образцового средства к средствам более низких разрядов (вплоть до рабочих) устанавливают в соответствии с поверочной схемой. Так, по одной из поверочных схем передача единицы длины путем последовательного лабораторного сличения и поверо[( производится от рабочего эталона к образцовым мерам высшего разряда, от них образцовым мерам низших разрядов, а от последних к рабочим средствам измерения (оптиметрам, измерительным машинам, контрольным автоматам и т. п.).  [c.110]

Теорема об изменении кинетической энергии устанавливает связь между изменением основной меры движения системы ма-тер альных точек — кинетической энергии — и мерой действия сил на протяжении путей движения точек системы — работой сил для широкого класса сил, носящих наименование консервативных, работа может быть выражена как изменение потенциальной энергии. Таким образом, в круг вопросов механики вводится понятие энергии. Значение этого понятия состоит в том, что им определяется единая физическая величина, проявляющаяся в различных физических явлениях и, таким образом, связывающая их между собой. Понятие энергии объединяет механику с термодинамикой, с учением об электрических явлениях и т. и. Преобразование механической энергии в другие формы энергии и обратное преобразование этих форм в механи-чесь ую энергию представляет важную задачу современной тех ики.  [c.105]

Значение величины не следует смсчнивать с размером. Размер ([)изической величины данного об1,екта существует реально и независимо от того, знаем мы ею или нет, выражаем его в какнх-.чнбо единицах или нет. Значение же физической величины появляется только после того, как раз.мер величины данного объекта выражен с помощью какой-либо единицы.  [c.10]

Наименования физических величии и других научно-технических понятий называются тер%н[иамп. Так как развитие науки и техники — процесс в какой-то мере стихийный, то в ходе развития науки одна и та же физическая величина получила не одно наименование, имела не один термин, а несколько.  [c.13]

Метрическая система мер — совокупность единиц физических величин, в основу которой положены две единицы метр — единица длины, килограмм — единица массы. Единицы площади и объема (вместимости) образованы как производные от метра. Отличительной особенностью Метрической системы мер явился принцип десятичных соотношеш1Й при образовании кратных и дольешх единиц.  [c.27]


Меисду размером и значением физической величины имеется принципиальная разница. Размер величины существует реально, независимо от того, знаем мы его или нет. Один и тот же размер величины может быть выражен различными значениями физической величины в зависимости от выбора ее единицы. Напри.мер, значение скорости 72 км/ч и 20 м/с выражает один и тот же размер. Величины, отражающие одно и то же свойство объекта, называют однородными. Они отличаются друг от друга только числовым значением.  [c.247]

Более 10 лет назад под редакцией академика И. К. Кикоина был издан универсальный справочник Таблицы физических величин , который стал достаточно популярным среди специалистов различного ранга. Однако любой справочник при всех своих достоинствах со временем неизбежно устаревает. Не избежали этого и Таблицы физических величин . Сначала казалось, что исправить их моя<но косметическими методами — устранением ошибок, небольшой корректировкой и дополнениями. Но с течением времени стало ясно, что необходима более глубокая, а в ряде случаев и коренная переработка материала с привлечением новых физических данных и с новым коллективом авторов. Так родилась идея издания нового универсального физического справочника. Однако воплотить ее в жизнь Иссак Константинович не успел под его руководством была выработана лишь общая концепция справочника и намечен коллектив авторов. На протяжении работы, которую нам пришлось выполнять уже без него, мы неоднократно сталкивались с различного рода сложными ситуациями и трудностями (касающимися отбора материала, его подачи, сложностей общения с большим коллективом авторов п т. д.), решение которых оказалось возможным в значительной мере благодаря обращению к тем идеям и принципам, которые были выработаны в совместных обсуждениях с И. К. Кикоиным. Поэтому все возможные достоинства справочника должны быть связаны с его именем, в то время как за все недостатки целиком и полностью отвечаем мы.  [c.8]

Основными средствами измерений являются меры, измерительные приборы, измерительные преобразователи и измерительные устройства. Мерой называется средство измерений, предназначенное для воспроизведения физической величины заданного размера. Измерительным прибором называется средство измерения, вырабатываюшее измерительный сигнал в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы подразделяются на аналоговые и цифровые, которые, в свою очередь, могут быть показывающими или регистрирующими. В регистрирующих приборах предусмотрена либо запись показаний на диаграммной бумаге, либо печать в цифровой форме.  [c.6]

Д. И. Менделеев следующим образом охарактеризовал роль измерений для развития науки Наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры . Системы единиц физических величин стали создаваться в XVIII—XIX вв. Первая система единиц, принятая в 1791 г. Национальным собранием Франции, имела в своей основе только две единицы метр и килограмм. Затем, в 1832 г., немецкий ученый К- Гаусс предложил систему, которую он назвал абсолютной, содержащую три основные единицы миллиметр, миллиграмм и секунду. В последующем на принципе, предложенном К. Гауссом, был создан ряд систем единиц физических величин, главные из которых кратко рассматриваются ниже.  [c.87]

Практика неразрушающих испытаний привела к необходимости точногб количественного описания энергетического состояния контролируемых объектов, естественной мерой которого является их температура. В процессе теплообмена энергия от более нагретого тела переходит к менее нагретому до установления теплового равновесия и выравнивания их температур. Это характеризует температуру как физическую величину, определяющую направление передачи тепловой энергии.  [c.121]

Как известно [1], пластическая деформация определяется как деформация, приводящая к остаточному изменению размеров образца (заготовки, прессовки и т. д.), ее мерой является величина натурального логарифма отношения конечного и начального размеров. Для самого же материала, который, образно говоря, размеров образца не знает и не помнит , мерой пластической деформации является только остаточная плотность дислокаций, связанных в определенную структуру (чаще всего ячеистую). При этом для одних условий деформации (Г = onst и е = onst) эти механическое и физическое определения можно привести в соответствие, однако при изменении условий появляется неопределенность. Дело в том, что одна и та же деформация, но при разных, например, температурах будет давать даже без учета процессов возврата различную остаточную плотность дислокаций и различную структуру [47, 373], следовательно, и свойства материала после таких обработок должны отличаться. Эта неопределенность затрудняет объяснение механических свойств деформированных металлов, их сравнение со свойствами тех же металлов в рекристаллизованном состоянии. Возникает и дополнительное осложнение, связанное с тем, что, как показывают данные электронно-микроскопического исследования (рис. 4.13), при повторной деформации дислокационная  [c.175]

Согласно одному из них, число основных единиц зада но нам природой и определяется характером тех явлений которые подлежат рассмотрению. В качестве обоснова ния такого взгляда приводятся даже философские соображения о том, что каждое новое качество должно характеризоваться и измеряться новой основной едини цей. При этом утверждается, что для описания всех явле ний из области механики необходимо и достаточно иметь три основные единицы. При исследовании же других физических явлений необходимо, кроме трех основных единиц, вводить для каждой области физики по крайней мере по одной дополнительной, специфической для данной области единице физической величины. Так, например, в учении о теплоте такой единицей может быть единица температуры, в учении об электричестве -единица заряда (количества электричества) или силы тока и т.п.  [c.34]

Термодинамическая шкала температур определяет температуру как измеряемую физическую величину и устанавливает ее единицу, которая на XIII Генеральной конференции по мерам и весам (1967 г.) была принята в качестве основной единицы (см. 1.6).  [c.192]


Смотреть страницы где упоминается термин Мера физической величины : [c.110]    [c.181]    [c.111]    [c.115]    [c.256]    [c.228]    [c.28]    [c.41]    [c.17]    [c.8]    [c.7]    [c.7]   
Основные термины в области метрологии (1989) -- [ c.0 ]



ПОИСК



Величина физическая

Мера величины



© 2025 Mash-xxl.info Реклама на сайте