Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деаэратор паровой

Деаэратор паровой 277 Деаэрация 274 сл.  [c.451]

При отсутствии деаэратора паровые котлы ставят на консервацию методом поддержания избыточного давления с температурой воды выше 100° С (105—110° С). Избыток давления в барабане котла создается периодической подпиткой котла питательной водой и прогревом паром через нижний барабан или периодическим разогревом топки.  [c.107]


Если же довольствоваться принятой на практике дозировкой аммиака, которая предусматривает поддержание его избытка на уровне 300—500 мкг/кг, то следует ожидать практически полного отсутствия щелочной реакции у питательной воды на участке деаэраторы — паровые котлы. Об этом свидетельствуют рассчитанные по формулам (16) и (19) данные зависимости от температуры концентрации ионов ОН для чистой воды и воды, содержащей 340 мкг/кг МНз х= = 2-10 г-ионов/кг). Подобная зависимость (рис. 2) свидетельствует  [c.61]

Ркс. 1.10. Принципиальная тепловая схема ПГУ-1100 с ВПГ-2650 с сжиганием твердого топлива в псевдоожиженном слое /—сушилка i —циклоны 3—высоконапорный парогенератор с псевдоожиженным слоем 4—циркуляционный насос 5—паровая турбина мощностью 800 МВт 5—конденсатор 7—конденсаторный насос 8—подогреватель низкого давления 9—питательный насос 10—деаэратор И— экономайзер 12—газовая турбина 13—компрессор 14—паровая турбина с противодавлением для привода дожимающего компрессора 15—дожимающий компрессор  [c.22]

Питательная вода из деаэратора с температурой 168 °С питательным насосом подается в экономайзер, где нагревается до 300 °С, и далее в парогенератор. Перегретый пар с давлением 13 МПа и температурой 515 °С из котла направляется в ЦВД паровой турбины, затем во  [c.23]

Рис. 9.36. Принципиальные схемы многоконтурных АЭС а — двухконтурная 6 — трехконтурная I — реактор 3 — паровая турбина 3 — электрогенератор —конденсатор — циркуляционный насос б —конденсатные насос 7 — деаэратор в — питательные насос 9 — ГЦН 10 — парогенератор и — компенсатор объема 12 — теплообменник 13 — пароструйный эжектор Рис. 9.36. <a href="/info/4763">Принципиальные схемы</a> многоконтурных АЭС а — <a href="/info/114622">двухконтурная</a> 6 — <a href="/info/114624">трехконтурная</a> I — реактор 3 — <a href="/info/885">паровая турбина</a> 3 — <a href="/info/122374">электрогенератор</a> —конденсатор — <a href="/info/27482">циркуляционный насос</a> б —<a href="/info/27435">конденсатные насос</a> 7 — <a href="/info/30226">деаэратор</a> в — <a href="/info/27444">питательные насос</a> 9 — ГЦН 10 — парогенератор и — компенсатор объема 12 — теплообменник 13 — пароструйный эжектор
Закалочный аппарат 1 представляет собой парогенератор, в котором за счет охлаждения продуктов пиролиза производится насыщенный водяной пар давлением 12,0 МПа. Образующаяся в нем пароводяная смесь поступает в сепаратор 3, где происходит разделение ее на воду и пар. Вода снова поступает в парогенератор, а насыщенный пар - в пароперегреватель 4. Перегретый пар поступает в паровые турбины 6 — 9, предназначенные для привода турбокомпрессоров. Отработанный в турбинах пар конденсируется в конденсаторах 10—13. Конденсат последовательно проходит очистку в очистителях 19 п 21 и деаэрацию в деаэраторах 24 и 25, после чего поступает в экономайзер 5 и далее в сепаратор парогенератора 3.  [c.334]


При растопке котлоагрегата с чугунным водяным экономайзером для охлаждения экономайзера подается питательная вода пока котельный агрегат не имеет достаточной паровой производительности, нагретая в чугунном экономайзере вода сливается в деаэратор или бак с пи-192  [c.192]

ТОПЛИВНЫЙ компрессор (насос) i —воз душный компрессор 3 —камера сгорания 4 —газовая турбина 5 — электрический генератор газовой турбины б —паровая турбина 7 — электрический генератор g конденсатор S — конденсатный насос /f подогреватели низкого давления регенеративного цикла И — деаэратор /2—питательный насос /3 — подогреватели высокого давления регенеративного цикла 14 — обычный котельный агрегат с топкой  [c.382]

По пути к деаэратору конденсат проходит через подогреватель паровых эжекторов отработавшим паром которых ои нагревается на несколько градусов до температуры по-  [c.160]

Консервация прямоточного котлоагрегата при любом методе требует создания замкнутого циркуляционного контура, включающего деаэратор и питательные насосы. На рис. 2-10 представлена типовая схема такого контура деаэратор— питательный насос — трубная система котла до главной паровой задвижки (до ГПЗ) — быстродействующая редукционно-охладительная установка — конденсатор — конденсатные насосы — подогреватели низкого давления— деаэратор. Для такой схемы применение консервации с использованием аммиака и гидразина не рекомендуется из-за опасений повышенной коррозии конденсаторных трубок. Следует также иметь в виду, что циркуляция раствора по этой схеме требует огневого подогрева раствора, так как включенный в нее расширитель на давление 20 кгс/см соединен с деаэратором только по паровой линии. Если же схема для консервации исключает конденсатор (рис. 2-11), то метод консервации гидразином и аммиаком применим.  [c.48]

На рис. 1-1 представлена общая схема технологического процесса современной электростанции. Как видно из рисунка, рабочее тело (вода) из аккумуляторного бака деаэратора, питательным насосом подается в паровой котел, в котором она превращается в насыщенный пар различного давления. Из котла насыщенный пар поступает в пароперегреватель, где он подсушивается и перегревается. Из пароперегревателя пар поступает в паровую турбину, находящуюся на одном валу с генератором. Экономически выгодно, чтобы рабочее тело расширялось до возможно меньшего давления. Для этого за турбиной устанавливается специальный конденсатор, через который по трубам циркулирует охлаждающая вода, а между трубами конденсируется отработанный пар турбины, в результате чего давление отработанного пара, выходящего из турбины, снижается до 0,03— 0,05 ат. Конденсированный пар с помощью насоса направляется из конденсатора в головку деаэратора, куда одновременно поступает и добавочная порция предварительно подготовленной (химически очищенной или обессоленной) воды, предназначенной для восполнения потерь конденсата, пара и котловой воды (потери последней происходят при продувке котлов). Добавление химически очищенной воды в котлы может достигать на ТЭЦ нескольких десятков процентов.  [c.7]

Нельзя вносить изменения в режим регенерации, т. е. допускать переключения подогревателей, деаэраторов, паровых насосов и пр. Если есть регулируемые промышленные и теплофикационные отборы, клапаны соответствующих корпусов низкого давления турбины должны быть также заклинены , а давление в отборе за счет соседних машин или потребителя должно поддерживаться постоянным. Необходимость столь радикальных ста-билизирущих мер может быть оправдана при снятии статических характеристик пароперегревателей, включая исследования средств регулирования. На парогенераторе с твердым топливом это существенно облегчает стабилизацию горения, которая в данном случае осуществляется по давлению пара.  [c.136]


Для оценки степени совершенства работы котельной в целом приведенные выражения для определения к. п. д. оказываются недостаточными, так как они не учитывают затрат тепла на собственные нужды. Тепло в котельной расходуется на следующие собственные нужды обдувка паром поверхностей нагрева распыление мазута в паровых форсунках опробование предохранительных клапанов и утечки пара через неплотности линий коммуникаций котельной потери тепла с продувочной водой потери, связанные с пуском, остановкой и содержанием агрегата в резерве подогрев питательной воды потери тепла с вьшаром деаэраторов паровой привод питательных насосов отопление служебных помещений и подогрев воды для душевых устройств котельной разогрев мазута в хранилищах и разогрев цистерн при сливе мазута.  [c.19]

Поскольку химочищенная вода, как цравило, предназначена для питания паровых котлов, в 1фуг задач химлаборатории входит не только контроль за работой водоподготовительного оборудования, но и контроль водного режима оборудования всей котельной или электростанции деаэраторов, паровых котлов, системы сбора, возврата и очистки конденсата.  [c.101]

На мощных энергоблоках давлением выше 100 бар (особенно с прямоточными котлами) комплексной предпусковой химической очистке подвергают весь пароводяной тракт в естественной последовательности. На энергоблоках с барабанными котлами вследствие затруднений с организацией движения промывочных растворов предпусковую кислотную промывку пароводяного тракта часто осуигествляют в два этапа. На первом этапе очистке подвергаются испарительные поверхности котла, экономайзер и барабаны котла, а на втором — пароперегреватели, регенеративные подогреватели высо кото давления, деаэраторы, паровые и питательные трубопроводы.  [c.79]

Деаэрацию осуществляют противотоком воды (в виде бризг или тонких струй) и пара. При этом достигается большая поверхность контакта воды с паром, и из воды испаряется кислород и некоторое количество растворенного диоксида углерода (рис. 17.2). Во время этого процесса вода нагревается и становится пригодной для питания бойлеров. Паровые деаэраторы такого рода являются стандартным оборудованием для всех стационарных водяных котлов высокого давления. Если необходимо получить холодную воду, растворенные газы удаляют, понижая давление, что достигается с помощью механических или пароструйных насосов. Этот способ называется вакуумной деаэрацией. Для него создано оборудование, способное деаэрировать миллионы литров воды в день.  [c.276]

Пар из котла 1 по паропроводу свежего пара 12 направляется в цилиндр высокого давления паровой турбины 2, откуда по паропроводу 13 поступает на промперегрев. Из промежуточного пароперегревателя 14 пар проходит цилиндры среднего и низкого давлений паровой турбины и сбрасывается в конденсатор. Из конденсатора 3 конденсат откачивается конденсаторными насосами 4 и через основной эжектор 5, охладитель газоохладителей 11, подогреватели низкого давления 9 и деаэратор 6 поступает на всас предвключенных (бустерных) насосов 8. Предвклю-ченные насосы поднимают давление на всасе питательных насосов 10, которые подают воду через подогреватели высокого давления 15 в котел 1.  [c.217]

После выполнения расчета принципиальной тепловой схемы котельной с паровыми И водогрейными котлами 1Можно проводить выбор вспомогательного оборудования теплообменников, аппаратов хим во-ДООЧИСТК1И, деаэраторов, насосов и других устройств.  [c.304]

Производительность деаэраторов выбирается по мамсимальному расходу питательной воды для котлоагрегатов и подпиточной воды, поступающей в тепловые сети величина емкости всех ба ков котельной рассчитывается для небольших установок па время их опорожнения за 20—30 мин inpn максимальной произво,дительности паровых котло-агрегатов. На крупных устапазках время опорожнения должно составлять не менее 15 мин.  [c.394]

Продувки котла по времени действия могут быть периодические и непрерывные. Периодические продувки проводят из нижних барабанов и коллекторов котлов, непрерывную продувку осуществляют из барабана котла (при двухбарабанных котлах — из верхнего). Вода непрерывной продувки подается в расширитель ( /, рис. 19-1), в котором ее давление падает до атмосферного. Образовавшийся пар поступает в деаэратор, где его тепло используется, а оставшаяся в расширителе вода по пути в сливной колодец часто пропускается через теплообменник, где используется еще часть ее тепла. Так как полностью избежать накипе-образования только улучшением качества питательной воды не удается, в котловую воду вводят соли фосфорной кислоты (фосфатирование), благодаря чему соли кальция и магния выделяются не в форме накипи, а в виде подвижного шлама, удаляемого из котла продувкой. Поскольку прямоточные котлы не могут работать с продувкой, их питают конденсатом от паровых турбин, а потери пара и конденсата возмещают дистиллированной водой, получаемой в испарителях, или химически обессоленной водой. Удаление из прямоточного котла осевших солей осуществляют в период остановки его на ремонт водной или кислотной промывкой его.  [c.321]


В рассматриваемой тепловой схеме паровая турбина 7 принята конденсационной (возможна установка и теплофикационных турбин) с нерегулируемыми отборами пара из промежуточных ступеней для регенеративного подогрева питательной воды. Начальные параметры пара перед турбиной 7—12,8 и 565° С. В установке предусмотрен один промежуточный перегреватель, в котором пар при давлении 2,65 Мн1м перегревается до 565° С. После турбины 7 отработавший пар поступает в конденсатор 8. Конденсат из него насосом 9 подается в подогреватели 10 регенеративного цикла низкого давления (все подогреватели низкого давления на схеме условно показаны в виде одного, обозначенного позицией 10). После подогревателя 10 конденсат поступает в деаэратор //и далее в питательный насос 12, который подает питательную воду в подогреватели 13 высокого давления (эти подогреватели также условно показаны в виде одного обозначенного позицией 13). Для того чтобы иметь возможность регулировать температуру питательной воды, ее поток после насоса 12 разветвляется и часть питательной воды направляется в водяной экономайзер 14, являющийся второй ступенью по ходу уходящих газов из турбины 5.  [c.381]

Специальные названия теплообменных аппаратов обычно определяются их назначением, например паровые котлы, печи, водо-подогреватели, испарители, перегреватели, конденсаторы, деаэраторы и т. д. Однако, несмотря на большое разнообразие теплообменных аппаратов по виду, устройству, принципу действия и рабочим телам, назначение их в конце концов одно и то же, это — передача тепла от одной, горячей жидкости к другой, холодной. Поэтому и основные положения теплового расчета для них остаются общими.  [c.228]

Вакуумная деаэрация нашла широкое распространение на ТЭЦ и в системах горячего водоснабжения. Вакуумный деаэратор включают после водо-водяного подогревателя, где температура повышается до 60—65 °С. В деаэрационной колонке поддерживается такой вакуум, чтобы поступающая из подогревателя вода имела некоторый перегрев (на 5—10 °С) по отношению к температуре насыщения, соответствующей давлению в деаэраторе. Вода при этих условиях вскипает, становится пересыщенным раствором газов, из которого выделяются газовые пузырьки. При этом из воды в паровую фазу поступает 90—95 % кислорода. Выделение оставшегося растворенного кислорода (5—10 %) происходит путем диффузии и протекает медленно. Для отсоса выделяющихся газов и поддержания в деаэраторе вакуума используют водоструйный эжектор. Для вакуумной деаэрации применяют струйные и струйно-барботажные колонки.  [c.116]

Фиг. 52. Тепловая схема турбины НЗЛ АП-6 генератор 2—паровая турбина 3 — соединительная муфта 4 — конденсатор 5—сепаратор б—стопорный клапан /—паровая коробка б—конденсатный насос с электрическим и паровым приводом Р — трёхступенчатый эжектор 10 и пусковые эжекторы /2—подогреватель низкого давления деаэратор /4—бак деаэратора /5 и питательные насосы /7— подогреватель высокого давления 76— расширительный бак 7Р—атмосферный клапан 20—циркуляционный насос 27-водяные фильтры 22— масляный бак 26—паро-масляный регулятор 2 7—пусковой масляный турбонасос 25—маслоохладитель 26 - воздухоохладитель 27 — бак водяного уплотнения 28— редукционноувлажнительная установка. Фиг. 52. <a href="/info/27466">Тепловая схема</a> турбины НЗЛ АП-6 генератор 2—<a href="/info/885">паровая турбина</a> 3 — <a href="/info/159404">соединительная муфта</a> 4 — конденсатор 5—сепаратор б—стопорный клапан /—<a href="/info/104410">паровая</a> коробка б—<a href="/info/27435">конденсатный насос</a> с электрическим и <a href="/info/69382">паровым приводом</a> Р — трёхступенчатый <a href="/info/30043">эжектор</a> 10 и <a href="/info/122174">пусковые эжекторы</a> /2—<a href="/info/114780">подогреватель низкого давления</a> <a href="/info/30226">деаэратор</a> /4—бак деаэратора /5 и <a href="/info/27444">питательные насосы</a> /7— <a href="/info/113855">подогреватель высокого давления</a> 76— <a href="/info/289006">расширительный</a> бак 7Р—<a href="/info/222358">атмосферный клапан</a> 20—<a href="/info/27482">циркуляционный насос</a> 27-водяные фильтры 22— масляный бак 26—<a href="/info/9645">паро</a>-масляный регулятор 2 7—<a href="/info/121932">пусковой масляный</a> <a href="/info/337521">турбонасос</a> 25—<a href="/info/121929">маслоохладитель</a> 26 - <a href="/info/121845">воздухоохладитель</a> 27 — бак водяного уплотнения 28— редукционноувлажнительная установка.
Предпусковую химическую очистку блока сверхкрити-ческих параметров проводят для той части оборудования, которая подвержена загрязнениям в процессе монтажа. Это означает, что химической очистке в основном дагтжен подвергаться котельный агрегат. Однако создание промывочных контуров для химической очистки ло любому методу оказывается наиболее удо бным, если о и включают деаэратор и ПВД (юо водяиой стороне). Включение этих элементов в промывку благоприятно и само по себе, так как, например, деаэраторный бак может быть источником загрязнения контура окислами железа. Понятно, что в любом случае химической очистке не подвергаются такие элементы блока, как турбина, конденсатор и ПВД (по паровой стороне).  [c.52]

Установленное в деаэраторах повышенного давления приспособление для дросселирования пара, подаваемого в деаэрационную головку, в виде ряда отверстий в паровом коллекторе ограничивает расход пара при резком увеличении тепловой нагрузки деаэратора. Вследствие этого происходит вскипание воды в баке-аккумуляторе и довольно часто возникает переброс пара в питательный насос. Чтобы этого избежать, необходимо увеличить суммарную площадь отверстий путем увеличения их числа и диаметра и сделать ее примерно равной площади сечения подводящей трубы. Это приведет к выключению барботажпого устройства, так как давление пара пе ред соплами станет равным давлению пара в деаэра> торе.  [c.77]

Паровое пространство баков-аикумуляторов параллельно работающих деаэраторов должно быть соединено паровой уравнительной линией, выбор диаметра которой зависит главным образом от давления в деаэраторах и их тепловой нагрузки. Чем меньше давление в деаэраторах и больше тепловая нагрузка, тем больше должен быть при прочих равных условиях диаметр уравнительного паропровода. При параллельной работе атмосферных деаэраторов производительностью 100 т/ч не рекомендуется применять диаметр уравнительного паропровода менее 200 мм. В случае параллельной работы деаэраторов с более высокой производительностью диаметр уравнительного паропровода необходимо принимать равным 250—300 мм.  [c.100]

И — паровой котел с пароперегревателем 5 — паропровод 4, 5 — турбина с генератором б — конденсатор 7 — конденсатный насос S — деаэратор 9 — питательный насос 10 — сетевой насос // — основной подолреватель 12 — пнкавый подогреватель 13 — редуктор 14 — подп иточныЙ насос /5 — химводоподготовка.  [c.58]

J котел ДКВр-10-13 г — газомазутные горелки з — водяной экономайзер 4 — воздуховод к дутьевому вентилятору 5 — дымосос типа Д-10 б — кирпичная дымовая труба 7 — деаэраторы питательной и подпиточной воды 8 — газорегуляторный пункт 9 — водоводпной подогреватель 10 — паровой подогреватель 11 — подпиточный бак 12 — бак раствора реагентов 13 — бак промывки Ма-катиони-товых фильтров 14 — сепараторы непрерывной продувки 15 — питательный паровой насос 16 — насосная 17 — помещение химической водоочистки.  [c.206]


На рис. 12-2 приведена компоновка оборудования котельной с паровыми котлами ДКВр-10-13, отпускающей насыщенный пар и горячую воду. Обмуровка котлов — тяжелая с асбоцементной штукатуркой, обшивка барабанов — металлическими листами. Чтобы избежать замораживания оборудования при останове котлоагрегатов,предусматривается вялая циркуляция питательной воды через котел. Котлы скомпонованы с индивидуальными блочными водяными экономайзерами системы ВТИ. Предусматривается химическая очистка добавочной воды обескислороживание всей питательной воды осуществляется в деаэраторах атмосферного типа.  [c.208]


Смотреть страницы где упоминается термин Деаэратор паровой : [c.54]    [c.359]    [c.24]    [c.277]    [c.290]    [c.335]    [c.220]    [c.292]    [c.207]    [c.74]    [c.252]    [c.83]    [c.6]    [c.6]    [c.34]    [c.8]    [c.10]    [c.76]    [c.95]    [c.7]   
Коррозия и борьба с ней (1989) -- [ c.277 ]



ПОИСК



Деаэратор



© 2025 Mash-xxl.info Реклама на сайте