Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

МЕТОД Структура волокнистая

Теплопроводность. Расчет теплопроводности волокнистых композиционных материалов производят с использованием моделей и методов обобщенной теории проводимости. Теплопроводность композиции в общем случае определяется теплопроводностью составляющих компонентов, соотношением компонентов, типом структуры и существенно зависит от направления изменения относительно волокон.  [c.221]

В сталях с эвтектоидным превращением возможно. получение двухфазных структур с мартенситными волокнами. Для этого пользуются методом неполной закалки. После прокатки при определенной температуре получается волокнистая структура аустенита в феррите. После закалки материала его структура состоит из феррита и мартенсита в виде волокон. Увеличение прочности может быть весьма заметным — с 42,8 до 105 кг/мм .  [c.110]


Прессованным заготовкам — пруткам из алюминиевых сплавов, прессованным на горизонтальных гидравлических прессах Дика прямим методом, присущи типичная дефектная структура, неоднородность величины и формы зерна по сечению прутка и неравномерность расположения составляющих сплава и загрязнения по границам зёрен. Структура прессованных этим методом прутков состоит из крупных равноосных зёрен, расположенных в периферийных слоях, и из строчечной волокнистой структуры внутренних слоев. В отдельных случаях при прессовании образуются расслаивания и трещины между слоями вследствие смещения зёрен относительно друг друга. Увеличение концентрации пористости и загрязнений в средней части слитков, отливаемых в чугунные изложницы, усиливает неравномерность структуры. Рекристаллизация средней зоны с резко выраженным анизотропным строением зерна крайне затруднительна. Прессованные прутки из сплава АК-5 с подобной структурой не обнаружили склонности к рекристаллизации в процессе отжига в течение 3 час. даже при температуре 540° С, т. е. близкой к температуре плавления эвтектики. Прессованная заготовка с нерекристаллизованной структурой, при расположении в штампе направлением волокна перпендикулярно действию деформирующей силы, часто даёт брак в виде трещин.  [c.460]

Структура прессматериалов (порошкообразная, волокнистая, слоистая) определяется структурой наполнителя. Структура прессматериалов без наполнителей обусловливается методом переработки.  [c.678]

В работах [3, 6] рассмотрены возможности и перспективы применения композиционных материалов при пайке. Композиционная структура в шве может быть получена за счет применения композиционного припоя, при диспергировании паяемых материалов или в процессе диффузионной пайки. Наполнитель в большинстве случаев обеспечивает основные физико-механические, в частности, прочностные свойства. Матрица может вводиться в припой в виде порошков или покрытий, которые наносятся на паяемые поверхности. По способу введения в зазор композиционные припои подразделяются на четыре основных вида применяемые в виде многослойных покрытий используемые в виде фасонных или простых профилей (фолы, лент, втулок и т. д.), получаемых методами порошковой или волокнистой металлургии в сочетании с обработкой давлением (прокатка, штамповка после пропитки матрицей порошков или волокон) методами нанесения покрытий на профили и т. д. применяемые в виде смеси порошков или паст, которые обычно вводят в зазор непосредственно перед пайкой комбинированные способы — сочетания приведенных выше видов.  [c.55]


Эвтектическими АМ называют материалы, полученные кристаллизацией из сплавов эвтектического состава, в которых армирующей фазой служат ориентированные волокна или пластинчатые кристаллы, образованные в процессе направленной кристаллизации. Направленную кристаллизацию осуществляют перемещением расплава в зону охлаждения с постоянным температурным градиентом (метод Бриджмена). Эвтектические КМ получают, создавая плоский фронт кристаллизации. Температурный градиент составляет 50...70 °С/см, в усовершенствованных конструкциях — до 500 °С/см. Если объемная доля армирующей фазы менее 12 %, образуется волокнистая структура, свыше 32 % — пластинчатая. С ростом объемной доли упрочнителя прочность эвтектических КМ повышается.  [c.126]

Деформированное состояние достаточно крупных образцов и моделей можно определять выявлением волокнистой макроструктуры. Преимуществом этого метода по сравнению с методом делительных, сеток является возможность определения деформаций во внутренних областях тела без нарушения его сплошности. Однако точность этого метода определения деформаций обычно значительно ниже точности метода делительных сеток. Кроме того, выявлением волокнистой макроструктуры можно определять деформации лишь материалов, обладающих так называемой строчечной структурой, обусловленной предшествующей пластической деформацией, например при волочении.  [c.48]

Однонаправленный волокнистый композит. Расчетные значения эффективных технических постоянных композитов с квазипериодической структурой приведены в табл. 4.1. Для композитов с содержанием волокон С/ = 0,4, 0,55 и 0,70 даны значения эффективных упругих постоянных волокнистого композита с периодической структурой (когда параметр структуры к равен нулю) [11, 16] и относительные отклонения от этих значений для композитов с различной степенью разупорядоченности структуры (к = 0,7 и к = 1), вычисленные с использованием формул (4.34) и (4.38) в сингулярном приближении метода периодических составляющих.  [c.82]

МОДЕЛИРОВАНИЕ СТРУКТУР ЯЧЕИСТЫХ ВОЛОКНИСТЫХ КОМПОЗИТОВ МЕТОДАМИ ФРАКТАЛЬНОЙ ГЕОМЕТРИИ  [c.173]

В заключение необходимо отметить, что приведенные примеры расчета методами теории фракталов сложных нелинейных взаимосвязей параметров структуры и физико-механических свойств стохастической волокнистой системы целиком базируются на учете флуктуаций плотности и подчеркивают их определяющую роль в технологических процессах изготовления композиционных материалов.  [c.237]

В основу книги легли лекции, читаемые автором на механико-математическом факультете. Излагаются теория эффективного модуля упругих, вязкоупругих и упруго-пластических композитов с периодической структурой, деформационная теория пластичности для структурно анизотропных тел. Большое внимание уделено слоистым и волокнистым композитам, для которых получены некоторые точные решения и описываются эффективные методы приближенного решения пространственных задач теории упругости.  [c.2]

На рис, 9.11 представлены результаты расчета зависимости коэффициентов Пуассона в трех плоскостях рассматриваемой волокнистой структуры Vi2, V23, 1 31 от объемной концентрации по алгоритму поэтапного усреднения. Разработанный приближенный метод расчета модулей упругости и КТР наполненных систем может использоваться для прогнозирования эффективных свойств систем как с анизотропными, так и с изотропными свойствами компонентов.  [c.199]

С целью изучения влияния природы волокнистого наполнителя на структуру полиэфирного армированного пластика в нашей работе был применен метод электронной микроскопии с использованием растрового электронного микроскопа (РЭМ), который позволяет получать почти трехмерное изображение исследуемой поверхности и исключает трудоемкий метод приготовления реплик с поверхности цри использовании электронного микроскопа просвечивающего типа.  [c.100]


Методы обработки основаны на использовании пластических свойств металлов, т. е. способности металлических заготовок принимать остаточные деформации без нарушения целостности металла. Отделочная обработка методами пластического деформирования сопровождается упрочнением поверхностного слоя, что очень важно для повышения надежности работы деталей. Детали станонится менее чувствительными к усталостному разрушению, новьипаются их коррозионная стойкость и износостойкость сопряжений, удаляются риски и микротрещины, оставшиеся от предшествующей обработки, В ходе обработки шаровидная форма кристаллов поверхности металла может измениться, кристаллы сплющиваются в направлении деформации, образуется упорядоченная структура волокнистого характера. Поверхность заготовки принимает требуемые форму и размеры в результате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается постоянным.  [c.385]

Синтетические волокнистые силикаты (асбесты) представляют собой новые виды неорганических полимеров, близких по структуре и свойствам к природным минералам группы амфиболов. Они получаются двумя способами 1) пирогенным, т. е. путем кристаллизации из раствора в расплаве фторсодержащих силикатных соединений, 2) гидротермальным — кристаллизацией при 200—550°С и давлении 10—ПО МПа из водных смесей окислов, гидроокисей и растворимых солей магния и силиката натрия [290]. Первым методом получают волокнистые фторамфиболы, вторым — волокнистые гидроксиламфиболы.  [c.203]

Синтетические неорганические волокна. В последнее премя ловышается интерес к синтезу волокнистых силикатов и к их применению в различных отраслях промышленности и в том числе для фильтрации агрессивных сред. Разрабатывают пиро-генные и гидротермальные методы синтеза волокнистых силикатов. В состав исходной шихты вводят кварц, окислы, карбонаты, фториды или кремнефтористые соли магния, натрия, лития и железа. Синтетические асбесты благодаря постоянству состава и структуры значительно превосходят природные по механической прочности, эластичности и другим свойствам. Они рекомендуются для изготовления фильтрующих сред в химической и пищевой промышленности, а также для кондиционирования воды, растворов и для очистки воздуха и различных газов. В США неорганические волокна получают из кремнекислого алюминия (волокно файберфракс), титаната калия (волокно тайперсол), а также из окислов кремния, алюминия, титана и магния.  [c.30]

Согласно этому методу,, частично упорядоченную реальную струк-туру армированного материала заменяют некоторой моделью, состоящей из периодически чередующихся в пространстве компонентов материала. Расчет упругих констант такой модели состоит в решении граничной задачи для многосвязной области. К настоящему времени результаты получены в основном для моделей однонаправленных волокнистых структур, в работе [10] решение представляется в виде ряда по эллиптическим функциям комплексного переменного. Численная реализация с применением ЭВМ позволила уточнить расчетные значения упругих констант композиционных материалов при различной геометрии укладки волокон в поперечном сечении однонаправленного материала. Одновременно выявлено влияние укладки на коэффициент концентрации напряжений в сплошных и полых волокнах.  [c.55]

Варианты расчета упругих характеристик. Рассмотренные ранее приближенные методы расчета упругих характеристик слоя нетрудно распространить на вычисление констант трехмер-ноармированного композиционного материала. Реализацию этих методов можно представить в трех вариантах. Первый вариант но существу является модификацией метода усреднения, где расчет двухмериоармирован-ного в ортогональных направлениях волокнистого материала сводится к расчету однонаправленной структуры с более жесткой анизотропной матрицей. Естественно, что введение третьего ортогонального направления не вносит принципиальных трудностей в расчет констант материала. Основным преимуществом указанного подхода является простота вычисления, однако сведение части арматуры в модифицированное ортотропное связующее позволяет лишь с очень большой погрешностью учитывать кинематическую связь между компонентами материала.  [c.64]

Чтобы понимать особенности поведения композитных материалов при нагружении в упругопластической области, необходимо разобраться в роли поверхности раздела как элемента структуры, передающего напряжения от матрицы к упрочнителю кюмпо-зита. Классификация поверхности раздела может быть основана на различных принципах. С физико-химической точки зрения различают следующие типы связи (по отдельности или в совокупности) механическую путем смачивания и растворения окисную обменно-реакционную смешанные связи [58]. В зависимости от способа изготовления или выращивания композита можно выделить две основные группы поверхностей раздела в композитах, полученных направленной кристаллизацией (in-situ), и в волокнистых композитах, армированных проволокой или волокнами и изготовленных путем диффузионной сварки, пропитки жидким металлом или методом электроосаждения. В композитах, изготовленных направленной кристаллизацией, фазы находятся практически в равновесии тем не менее в них возможна физикохимическая нестабильность [4, 74], которая приводит к сфероиди-зации или огрублению структуры при незначительном изменении состава и количества какой-либо фазы. Иная ситуация имеет место в волокнистых композитах — различие химических потенциалов в окрестности поверхности раздела является движущей силой химической реакции и (или) диффузии, а эти процессы могут приводить к изменению состава и объемной доли каждой фазы.  [c.232]


Пористость кожи —её характерная особенность. Поры расположены в коже неравномерно и и.меют различную величину в зависимости от характера исходного сырья и методов производства. Количество, размеры и расположение пор в коже определяют ряд её свойств, как то воздухо-, водо- и паро-проницаемость, теплопроводность и намокае-мость. Поры кожи образованы межволоконным пространством волокнистой структуры, каналами волоса, потовых и жировых желёз, а также дыхательными путями. Наличие пор обусловливает значительно развитую внутреннюю поверхность кожи, способную адсорбировать значительное количество газов, паров воды, растворённых веществ и жидкостей.  [c.331]

Отсутствие тесной связи между ударной вязкостью, критической температурой хрупкости, уровнем легирования и структурой препятствовало введению их в расчетные методы. Д. И. Ньюхауз, разделив работу разрушения образца при ударном нагружении на две составляющие, показал, что работа распространения трещины пропорциональна площади волокнистой составляющей в изломе и одинакова для различных строительных сталей.  [c.114]

Применение высокоэффективных теплоизоляционных материалов позволя-ет использовать интенсифицированные технологические процессы и повышает экономичность и улучшает эксплуатационные качества различных соору-, жений, машин, приборов и т. д. Весьма перспективным является промышленное освоение тонкодисперсных материалов со сверхнизкой теплопроводностью, имеющих зернистую, ячеистую и волокнистую структуру (аэрогелей, кремнегелёй, пенопластмасс, стекловолокна). Для этого необходима дальнейшая разработка теории тепло-переноса-в тонкопористых и вакуумируемых дйсперсных материалах, создание методов технологического расчета, изготовления и контроля таких веществ.  [c.228]

Третий способ характеризуется применением припоя, сохраняющего композиционную структуру в шве после пайки. Обычно методами волокнистой металлургии получают губчатообраз-пую сетку, состоящую из стальных волокон диаметром 13 мкм и более (длина волокна в 20 раз больше диаметра). Сетку спекают и пропитывают расплавом припоя и прокатывают до нужной толщины (0,05 мм и более). Объемная доля волокна 10—20%, Полученную ленту припоя укладывают на соединяемые поверхности, которые собираются с зазором или без зазора и производят пайку. В качестве припоя используют сплавы 70 % РЬ—30 % Sn и др. Сетку, волокна можно также размещать в зазор а 1 мм с последующей операцией частичного спекания или без нее. Припой (матрица) укладывается около зазора и в процессе пайки пропитывает пористый материал. Аналогично производят пайку с использованием смеси порошков. Применение смесей порошков позволяет паять материалы с большими зазорами и, что особенно важно, соединять разнородные материалы с резко различающимися значениями ТКЛР, снижать напряжения в шве при пайке инструмента, регулировать Teneiib растекания припоя, паять пористые материалы с компакт-  [c.57]

К композитам с каркасной структурой относятся, например, псевдосплавы, полученные методом пропитки с матричной структурой -дисперсно-упрочненные и волокнистые композиты со слоистой структурой - композиты, составленные из черед тощихся слоев фольги или листов материалов различной природы или состава с комбинированной структурой - включающие комбинации первых трех групп (например, псевдосплавы, каркас которых упрочнен дисперсными включениями -каркасно-матричная структура и др.).  [c.8]

Керамические порощки получают как традиционными методами — синтезом из простых веществ, карботермическим синтезом, так и самораспространяющимся высокотемпературным синтезом (СВС), плазмохимическим и растворным синтезом, диссоциацией сложных соединений и электролизом. Размер частиц порошков находится в пределах от 20 нм до 500 мкм. Форма частиц порошков губчатая, осколочная, округлая, ограненная, изометрическая, волокнистая. Порошки получают с кристаллической и аморфной структурами.  [c.138]

Стандарт ASTM D3532-76 (Время желатинизации в препре-гах на основе углеродных волокон и эпоксидных связующих) посвящен определению времени желатинизации в предварительно пропитанных эпоксидным связующим волокнистых структурах на основе углеродных (графитовых) волокон. Этот метод пригоден для связующего как с высокой, так и с низкой вязкостью. Образцы вырезаются из препрега и нагреваются на горячей поверхности (с заданной для данного связующего температурой). Наблюдается образование бусинок из связующего, выступающих из препрега. Время желатинизации отмечается в точке, когда вместо бусинок образовываются зазубрины или застеклованные подтеки.  [c.445]

Сравнение результатов раьсчетов эффективных свойств по методу периодических составляющих с данными работы [8], когда стохастические задачи для волокнистых композитов с квазипериодической структурой решались в реализациях с использованием метода локального приближения, свидетельствует о качественном и количественном их совпадении.  [c.83]

Необходимое в таких случаях исследование структуры системы было выполнено с использованием имитационного моделирования. Практическая реализация данного метода предполагаег наличие в моделируемой среде трех структурных уровней, типичных для волокнистых композитов, например стеклопластиков [36]. Простейшим структурным  [c.222]

В книге рассматриваются современные модели расчета и методы параметрической оптимизации несущей способности оболочек вращения из композитов двумерной и пространственной структур армирования. Основное внимание при этом уделено оболочкам, работающим на статическую устойчивость или в режиме колебаний, эффективные деформативные характеристики которых определяются методами теории структурного моделирования композита. В задачах, содержащих оценки предельных состояний оболочек по прочности, используется феноменологическая структурная модель прочностных характеристик слоистого композита, параметры которой получены экспериментально. Подробно анализируются особенности постановки задач пара.метрической оптимизации оболочек из композитов. Показана взаимосвязь векторной и скалярной моделей задач оптимизации в случае формализуемых локальных критериев качества проекта. Значительное место отведено изложению и примерам приложения нового метода решения задач оптимизации оболочек из. многослойных композитов — метода обобщенных структурных параметров, применение которого позволяет получить наиболее полную информацию об опти.чальных проектах широкого класса практически важных задач оптимизации. Содержащиеся в книге результаты могут быть использованы для инженерного проектирования оболочек из волокнистых композитов. Табл. 23, ил. 58, библиогр. 181 назв.  [c.4]

Существенным недостатком данного метода - является то, что не учитьшается структура смеси, и, например, для сферических, волокнистых, эллипсоидальных частиц выражение для Л имеет одинаковый вид, в то время как эксперимент покаэьшает различную для таких систем зависимость Л от концентрации.  [c.16]

Миогокомпоиентные структуры. Если волокнистый материал состоит из нескольких сортов волокон, т. е. является многокомпонентной системой, то его эффективная теплопроводность может быть вычислена по методам, рассмотренным в 2.6. Один из них связан с последовательным сведением многокомпонентной системы к бинарной, т. е. несколько раз используется формула (2.8), в которой на первом этапе концентрации определяются по формулам (2.50).  [c.125]

Результаты расчета статистических моментов объемных и сдвиговых деформаций для однонаправленного волокнистого стеклопластика и органопластика в зависимости от величины наполнения Уо для квазипериодической структуры, приведенной на рис. 2.3, а, при различных значениях степени разупорядоченности к в сравнении с решением метода локального приближения представлены на рис. 2.28 и 2.29 соответственно. Результаты расчета коэффициентов вариаций объемных Хуу и сдвиговых де-  [c.120]


Численный расчет. Для иллюстрации представленного корреляционного приближения модернизированного метода периодических составляющих рассмотрим расчет полей напряжений в матрице вблизи межфазной поверхности волокон для некоторых реализаций вектора разупорядоченности УС квазипериодической структуры фрагмента однонаправленного волокнистого композита при однородной макродеформации. На рис. 3.4 и 3.5 для рассматриваемой ячейки в соответствующей реализации структуры фрагмента квазипериодического композита представлены результаты расчета нормальных (Уп и касательных <7 межфазных напряжений композита в зависимости от полярного угла р дополнительно приведены предварительно рассчитанные значения отклонений А<7 нормальных напряжений  [c.143]


Смотреть страницы где упоминается термин МЕТОД Структура волокнистая : [c.305]    [c.176]    [c.583]    [c.166]    [c.27]    [c.56]    [c.48]    [c.308]    [c.245]    [c.111]    [c.15]    [c.216]    [c.38]    [c.308]    [c.283]    [c.681]    [c.351]    [c.114]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.145 ]



ПОИСК



Волокнистость

Моделирование структур ячеистых волокнистых композитов методами фрактальной геометрии

Структура волокнистая



© 2025 Mash-xxl.info Реклама на сайте