Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Неорганические волокна

Органические и неорганические покрытия. Лакокрасочные покрытия, хорошо защищающие от атмосферной коррозии, в почве становятся неэффективными уже через несколько месяцев. Рекомендуется наносить толстослойные покрытия на основе каменноугольной смолы с армирующими пигментами или неорганическими волокнами —для уменьшения текучести смолы. Они обеспечивают эффективную защиту при сравнительно небольших затратах.  [c.187]


Прогресс в области технологии производства синтетических волокон с модифицированными свойствами достиг такого уровня, при котором оказалось возможным получение армирующих материалов, способных конкурировать с неорганическими волокнами.  [c.46]

Гипсовые твердые покрытия. Изготовляются из гипса и кизельгура с добавкой органического или неорганического волокна. Объемный вес 850 кз/л , коэффициент теплопроводности 0,16 ккал .и-час-град при температуре 50° С, временное сопротивление сжатию 10—40 кг/см . Применяются для защиты изоляции от механических повреждений и заменяют мокрую штукатурку.  [c.359]

Неорганические волокна — асбест и стекловолокно отличаются от органических волокон прежде всего более высокой рабочей температурой.  [c.147]

Неорганические волокна асбестовое, стеклянное и другие минеральные отличаются от органических прежде всего более высокой рабочей температурой.  [c.175]

Поэтому при малых деформациях, характерных для материалов,, армированных неорганическими волокнами (а также и для углепластиков), можно пользоваться формулой (2.1.2), т. е. пренебречь величиной А1 по сравнению с 1 , как и изменением площади поперечного сечения. Эти факторы иногда необходимо учитывать при испытаниях пластмасс, армированных органическими волокнами, которые разрушаются при больших деформациях (10% и более). При одноосном растяжении образца возникают также поперечные относительные деформации Еу и вследствие изменения размеров рабочей части образца по ширине и толщине. Эти деформации выражают коэффициентами Пуассона  [c.53]

Одним из суш ественных достоинств термопластов, наполненных неорганическими волокнами, является повышенная по сравнению с ненаполненными теплостойкость. Это обусловлено значительно большей жесткостью полимера, вследствие которой уменьшается его деформируемость при повышенных температурах и несколько повышается температура стеклования [18, с. 179 19—22]. Если полимер хорошо смачивает наполнитель н его влияние распространяется на значительный объем, то введение наполнителя вызывает ограничение молекулярной подвижности в пограничных слоях, что  [c.196]

F 125 165 Ткани из неорганического волокна -стекло, асбест с пропиткой кремнийорганическими лака.ми и эпоксидными смолами  [c.398]

После известной модификации методы сопротивления материалов применимы и к деталям из анизотропных материалов. Перечень нужно начать с деревянных брусьев, переходя далее ко всякого рода композитам. Последние представляют собой достаточно пластичную матрицу, армированную высокопрочными волокнами. Матрицы и волокна могут быть как органическими, так и неорганическими, включая и металлы.  [c.11]


Наполнители могут быть волокнистые и порошкообразные. Основное назначение волокнистых наполнителей — увеличение механической прочности, уменьшение хрупкости. Волокна неорганические по сравнению с органическими повышают теплостойкость по Мартенсу и нагрево-стойкость. В качестве наполнителя часто применяется древесная мука — тонкоизмельченная древесина, однако сохраняющая свою волокнистость. Она применяется в пластмассах не очень высокого качества, но зато является самым дешевым волокнистым наполнителем. Более высококачественным наполнителем, чем древесная мука, являются древесная целлюлоза и не пригодные для текстильного производства хлопковые очёсы. Благодаря более чистому и более длинному волокну очесы обеспечивают при том же связующем большую механическую прочность прессованным изделиям и лучшие электрические параметры, чем древесная мука и целлюлоза. Детали с высокой механической прочностью получают при использовании в качестве наполнителя рубленой ткани. В этом случае прессматериал получается обычно в виде текстолитовой крошки — мелко нарубленной хлопчатобумажной ткани, пропитанной соответствующими полимерами, обычно фенолформальдегид-ными.  [c.192]

К числу неорганических- волокнистых наполнителей относятся асбестовое и стеклянное волокно. Асбестовое  [c.192]

Конструкционные материалы. В качество материала машиностроительных конструкций используются в основном металлы и их сплавы, а также различные неорганические и органические материалы (полимеры, пластмассы, волокна, керамика и др.). В последнее время нашли применение композиционные материалы, состоящие из высокопрочных нитей стекла, бора, углерода и связующего (полимеров и металлов). В строительных конструкциях используются бетон (смесь крупных и мелких каменных частиц, скрепленных цементом), железобетон (бетон, усиленный стальными стерж-нями), кирпич, дерево и другие материалы.  [c.11]

В большинстве случаев пластмассы состоят из двух основных компонентов связующего и наполнителя. Связующее — обычно органический полимер, обладающий способностью деформироваться под воздействием давления. Иногда применяется и неорганическое связующее, например стекло в микалексе, цемент в асбоцементе ( 6-1, 6-19). Наполнитель, прочно сцепляющийся со связующим веществом, может быть порошкообразным, волокнистым, листовым ( древесная мука — мелкие опилки, каменная мука , хлопчатобумажное, асбестовое или стеклянное волокно, слюда, бумага, ткань) наполнитель существенно удешевляет пластмассу и в то же время может улучшать ее механические характеристики (увеличивать прочность, уменьшать хрупкость). Гигроскопичность и электроизоляционные свойства в результате введения наполнителя, как правило, ухудшаются, поэтому в пластмассах, от которых требуются высокие электроизоляционные свойства, наполнитель чаще всего отсутствует.  [c.148]

Теплозвукоизоляция. В качестве теплозвукоизоляционных используются [64] неорганические материалы вата минеральная, вата стеклянная из непрерывного волокна, плиты из минеральной ваты, изделия из стеклянного штапельного волокна, пено-пласты блоки пеностекла. Для защиты от солнечных лучей на окнах применяют щиты, жалюзи, занавеси из металлизированной ткани, алюминиевую фольгу.  [c.185]

Неорганические композиционные материалы на основе волокон из карбида кремния. Согласно [14-16], для армирования керамики более эффективны волокна из карбида кремния, чем углеродные волокна. Ниже рассмотрены примеры таких композиционных материалов.  [c.278]

Армирующие волокна, используемые для получения КМ, должны иметь следующие свойства малую плотность, высокую температуру плавления, минимальную растворимость в материале матрицы, высокую прочность во всем интервале рабочих температур, высокую химическую стойкость, технологичность, отсутствие фазовых превращений в зоне рабочих температур, отсутствие токсичности при изготовлении и эксплуатации. Применяют в основном три вида волокон нитевидные кристаллы, металлическую проволоку, неорганические и поликристалличе-ские волокна.  [c.459]

Неорганические и поликристалличе-ские волокна имеют малую плотность, высокую прочность и химическую стойкость. Широко применяют углеродные, борные, стеклянные и другие волокна для армирования пластмасс и металлов.  [c.459]


Помимо связующего в состав композиционных пластмасс входят следующие компоненты I) наполнители различного происхождения для повышения механической прочности, теплостойкости, уменьшения усадки и снижения стоимости композиции органические наполнители -древесная мука, хлопковые очесы, целлюлоза, хлопчатобумажная ткань, бумага, древесный шпон и др. неорганические -графит, асбест, кварц, стекловолокно, стеклоткань, волокна углерода, бора и др. 2) пластификаторы (дибутилфталат, касторовое масло и др.), увеличивающие эла-  [c.478]

Стекловолокна, однако, не единственный вид волокон, используемых в настоящее время. Асбест, естественное неорганическое волокно, также обладает хорошими прочностью, модулем упругости и другими свойствами. Стальная проволока, вытянутая до малого диаметра и соответствующим образом термообработанная, может иметь прочность около 420 кгс/мм и модуль упругости в 3 раза более высокий, чем у стекловолокон. Более экзотические виды волокон интенсивно разрабатываются в настоящее время для авиационно-космической техники, к ним относятся волокна из углерода и графита, бора, бериллия и некоторых карбидов, однако они пока слищком дороги для строительной промышленности. Еще более экзотическими волокнами являются нитевидные кристаллы, прочность которых приближается к теоретической. Некоторые виды волокон и нитевидных кристаллов представлены в табл. 1 [2].  [c.264]

Фильтрующие элементы Ультипор UV и US изготовляют из целлюлозы, пропитанной эпоксидной смолой и покрытой очень тонкими многослойными неорганическими волокнами с эпоксидной пропиткой. Номинальная тонкость фильтрования этих элементов составляет US — 10 мкм UV — 3 мкм.  [c.203]

В соответствии с ТУ 193-54 МСПМХН бозобжиговые теплоизоляционные изделия изготовляются из смеси диатомита или трепела, асбошифэрпых отходов, органического или неорганического волокна и минеральных вяжущих в виде плит, скорлуп и сегментов и имеют следующую характеристику  [c.26]

Синтетические неорганические волокна. В последнее премя ловышается интерес к синтезу волокнистых силикатов и к их применению в различных отраслях промышленности и в том числе для фильтрации агрессивных сред. Разрабатывают пиро-генные и гидротермальные методы синтеза волокнистых силикатов. В состав исходной шихты вводят кварц, окислы, карбонаты, фториды или кремнефтористые соли магния, натрия, лития и железа. Синтетические асбесты благодаря постоянству состава и структуры значительно превосходят природные по механической прочности, эластичности и другим свойствам. Они рекомендуются для изготовления фильтрующих сред в химической и пищевой промышленности, а также для кондиционирования воды, растворов и для очистки воздуха и различных газов. В США неорганические волокна получают из кремнекислого алюминия (волокно файберфракс), титаната калия (волокно тайперсол), а также из окислов кремния, алюминия, титана и магния.  [c.30]

Наиболее часто армированные пластики получают свое название по материалу арматуры стеклопластики, боропластики, асбопластики, органопластики и др. В качестве арматуры применяются природные органические волокна, бумага, синтетические органические волокна, природные и синтетические неорганические волокна и металлические нити. Армирующие материалы могут применяться по-разному в натуральном виде (например, короткие волокна из асбеста или целлюлозы), в виде мата, бумаги, отдельных непрерывных волокон, ровницы, ткани не все они используются в одинаковой степени.  [c.19]

Изделия из кремнеземных стекловолокнистых материалов. Для высокотемпературоустойчивой тепловой изоляции применяются неорганические волокна с температурой плавления 1750—1800° С кварцевое, кремнеземное и каолиновое.  [c.57]

Общим для них является использование волокнистых материалов, обеспечивающих высокую прочность при растяжении, и связующих материалов типа органической смолы, при помощи которых соединяются все волокна, что и помогает равномерно распределить нагрузку по ним. В качестве основного материала могут быть использованы стекло различных видов, органические и неорганические волокна или металлы. Связующими материалами могут служить полиэфир, кремнефеноловый эпоксид или мела-12-  [c.12]

На основе асбестовой бумаги и полиалюмофосфатного связующего могут быть изготовлены слоистые пластики типа гетинакса с рабочей температурой до 650° С. На основе полиалюмофосфата в сочетании с кремнийорганической смолой и неорганическими наполнигелями (асбестовое волокно, молотый фторфлогопит, каолин и окислы некоторых металлов) может быть изготовлена дугостойкая прессмасса на рабочую температуру 600° С.  [c.246]

Кроме того, в состав компаундов могут входить активные ра. бавители, понижающие вязкость компаунда, пластификаторы, отвердители. инициаторы и ингибиторы, назначения которых те же, что и в Лаках. В состав компаунда могут также входить наполнители — неорганические и органические порошкообразные или волокнистые материалы, применяемые для уменьшения усадки, улучшения теплопроводности, уменьшения температурного коэффициента расширения и снижения стоимости. В качестве наполнителей применяют пылевидный кварц, тальк, слюдяную пыль, асбестовое и стеклянное волокно и ряд других.  [c.225]

К классу нагревостойкости С относятся чисто неорганические материалы, не содержащие склеивающих илн пропитывающих органических составов (слюда, стекло и стекловолокнистые материалы, кварц, асбест, микалекс, непропитанный асбоцемент, нагреоостойкие (на неорганических связующих) миканиты и т. п.). Из всех органических электроизоляционных материалов к классу нагревостойкости С относятся только политетрафторэтилен (фторо-иласт-4) и материалы на основе полиимидов (пленки, волокна, изоляция эмалированных проводов и т. п.).  [c.83]

Асбоцемент — твердый материал холодной прессовки чисто неорганического состава, в котором наполнителем является асбест, а связующим — цемент. При изготовлении асбоцемента распушенное асбестовое волокно смешивают с цементои и водой и прессуют, причем цемент твердеет под действием воды и прочно соединяет волокна асбеста. Асбоцемент выпускается в виде досок толщиной 4— 0 мк,  [c.182]


К неорганическим наполнителям относятся молотый кварц, слюда, тальк тонкодисперсные порошки металлов (алюминий, железо и др.) и окислов (кремнезем двуокись титана, окислы магния, бария, кальция и др.), карбиды (карбид кремния и др.), некоторые соли (сернокислый барий, циркон, волостеннт и др.) асбестовые и стеклянные волокна, нити, ткани и т. п.  [c.12]

Некоторые авторы считают [5, 27], что основную и наиболее опасную часть неорганического загрязнителя составляют компоненты атмосферной пыли и притирочных паст. Сама же пыль в своем составе содержит главным образом кварц, полевые шпаты. В загрязнителе также содержатся окислы железа, алюминия и продукты износа в виде высокодисиерсных частиц металлов, сплавов, частиц резины, пластмасс, волокна и др.  [c.85]

Анизотропия физических свойств термопластов, наполненных углеродными волокнами, аналогична анизотропии свойств термопластов, содержащих стекловолокна. Сочетание стекловолокна со стеклоби-сером, дисперсными наполнителями неорганического и других типов приводит к ухудшению свойств композиционного материала то же самое наблюдается и при литье под давлением термопластов, наполненных углеродными волокнами. Большое влияние на усадку, приводящую к искажению формы изделия, оказывает расположение литников хороший эффект достигается при одновременном использовании нескольких литников. На рис. 3. 23 приведены результаты модельного эксперимента, в котором для образцов двух конфигуращ1Й изменяли расположение и форму литниковых отверстий и измеряли коэффищ1ент искажения формы.  [c.103]

Гипсовые изделия получают из гипсового теста, т.е. смеси гипса и воды, а гипсобетонные — из смеси гипса, воды и заполнителей. Вяжущими для изготовления гипсовых и гипсобетонных изделий в зависимости от их назначения служат гипсовое вяжущее, водостойкие гипсоцементно-пуццола-новые смеси, а также ангидритовые цементы. Заполнителями гипсовых и гипсобетонных изделий являются естественные неорганические материалы — песок, пемза, туф, топливные и металлургические шлаки, а также легкие искусственные пористые заполнители (щлаковая пемза, керамзитовый гравий, аглопорит и др.). В качестве органических заполнителей используются древесные опилки, стружка или шерсть, бумажная макулатура, стебли и волокно камыша, льняная костра и др.  [c.296]

По технологии изготовления неорганическое стекло может быть получено выдуванием, литьем, штамповкой, вытягиванием в листь1, трубки, волокна и др. Стекло выпускается промышленностью в виде готовых изделий, заготовок и отдельных деталей.  [c.351]


Смотреть страницы где упоминается термин Неорганические волокна : [c.199]    [c.131]    [c.62]    [c.227]    [c.54]    [c.216]    [c.124]    [c.140]    [c.42]    [c.173]    [c.34]    [c.237]   
Смотреть главы в:

Электроизоляционные лаки, пленки и волокна  -> Неорганические волокна



ПОИСК



Волокна

Волокна синтетические неорганические

Материалы из неорганических волокон

НЕОРГАНИЧЕСКИЕ ВОЛОКНИСТЫЕ ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ АСЛАНОВА, М. Д. ХОДАКОВСКИВ 9- 1. Стеклянное волокно и изделия из него

Неорганические волокнистые материалы Асланова, Е. А. Чайкина Стеклянное волокно и изделия нз него

Теплоизоляционные материалы для глубокого из неорганических волокон

Физико-химические свойства неорганических волокон и материалов на их основе

Фильтровальные ткани из неорганических волокон и проволоки



© 2025 Mash-xxl.info Реклама на сайте