Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Суспензии свойства

Специальные добавки. Добавки вводят в связующие растворы и суспензии для регулирования их свойства. Их подразделяют на добавки, улучшающие свойства суспензий, и на добавки, улучшающие свойства оболочек.  [c.214]

Вязко-пластичные жидкости представляют собой нечто среднее между жидкими и твердыми телами и известным образом совмещают в себе свойства как вязкой ньютоновской жидкости, так и твердого пластичного тела. К их числу, например, относятся различного рода суспензии и коллоидальные растворы, состоящие из двух фаз — твердой и жидкой, глинистые и цементные растворы, парафинистые нефти, битумные изоляционные материалы.  [c.288]


Из водной суспензии размолотой целлюлозы, так называемой пульпы, на специальных машинах изготовляют ролевые и листовые бумаги и картоны. При этом волокна стремятся расположиться преимущественно по ходу машины по направлению движения пульпы в долевом направлении. Этим объясняется различие механических свойств бумаг и картонов в разных направлениях продольное (по ходу машины) и поперечное. Предел прочности вдоль при растяжении выше, удлинение при разрыве меньше, чем поперек .  [c.166]

Магнитный пенетрант является суспензией, частицы твердой фазы которой имеют ферромагнитные свойства, а жидкий носитель представляет собой молекулярную или коллоидную дисперсию люминофора, красителя или другого индикатора.  [c.148]

Чувствительность магнитопорошкового метода, определяемая минимальными размерами обнаруживаемых дефектов, зависит от многих факторов, таких как магнитные характеристики материала контролируемой детали, ее формы и размеров, характера (типа) выявляемых дефектов, чистоты обработки поверхности детали, режима контроля, свойств применяемого магнитного порошка, способа нанесения суспензии, освеш,енности контролируемого участка детали и т. п.  [c.33]

Одним из способов получения композиционных покрытий, состоящих из металлической матрицы и распределенных в ней мелкодисперсных частиц, является химическая металлизация из суспензий [1 ]. Проведенные к настоящему времени исследования в основном рассматривали вопросы нанесения композиционных покрытий из кислых растворов химического никелирования при нагревании [2]. Задачей настоящей работы явилось изучение условий образования и некоторых свойств композиционных по-  [c.26]

Деталь очищают от грязи, покрытий и т. п., обезжиривают и высушивают, затем на ее поверхность наносят слой пенетранта и выдерживают некоторое время для того, чтобы жидкость проникла в открытые полости дефектов. Для ускорения процесса применяют вакуумную, компрессорную, ультразвуковую вибрационную пропитку. После этого поверхность изделия очищают от пенетранта или гасят его специальным веществом (для люминесцентного метода) в полостях же дефектов индикаторная жидкость остается. На поверхность изделия после удаления пенетранта наносят проявляющий материал — быстросохнущую суспензию (лаковое покрытие). Проявляющий материал, обладающий сорбционными свойствами, вытягивает пенетрант из полостей дефектов, что образует индикаторные следы, размер которых тем больше, чем глубже дефект и больше выдержка с момента нанесения проявляющего слоя. Индикаторный след при цветном методе имеет обычно ярко-красную окраску, при люминесцентном — светится в УФС.  [c.36]


Разработана [29] фосфатирующая грунтовка АК-209 (бывшая ВГ-5), представляющая собой суспензию пигментов в растворе синтетических смол в смеси органических растворителей и в кислотном разбавителе. Грунтовка является однокомпонентной и предназначается для грунтования поверхностей алюминиевых сплавов, сталей, никелевых сплавов и других металлов, эксплуатируемых при температуре до 300 °С. Отличительной особенностью этой грунтовки является повышенная теплостойкость и высокие защитные свойства. Системы покрытий с крем-нийорганическими эмалями КО-88 и КО-811 по грунтовке  [c.151]

Покрытия, представляющие собой композиции, состоящие из металла, сплава и частиц диспергированного в суспензии простого или сложного вещества (в различном сочетании), дают возможность резко улучшить механические и антикоррозионные свойства изделий, на которые они наносятся, не изменяя внешней формы изделий. Эти очень ценные свойства покрытий создают предпосылки для широкого использования их в различных отраслях промышленности.  [c.5]

Физико-химические свойства суспензий [1, с. 21, 22]. При добавлении частиц второй фазы изменяются вязкость, электропроводимость и pH электролита. Для расчета относительной электропроводимости у электролитов, содержащих непроводящие цилиндрические л шарообразные частицы, предложена, в частности, следующая эмпирическая формула  [c.34]

Роль условий электролиза. Возможность образования покрытий заданного состава зависит от многих условий, но определяющими являются взаимодействия между частицами, составными частями электролита, поверхностью растущего осадка и разряжающимся на катоде водородом. Для направленного получения КЭП необходимо учитывать заряды частиц и поверхности катода, их взаимную адгезию, смачиваемость частиц электролитом и возможные химические реакции между последними. Иными словами, необходимо знать, существует ли определенное сродство или отчужденность между катодной поверхностью и зарастаемой частицей. Проявление этих свойств определяется природой электролита (ионный состав, pH, наличием поверхностно-активных веществ и других добавок), условиями электролиза (плотность тока, градиент потенциала, температура, скорость движения суспензии и др.), а также природой металла и частиц. Рассмотрим влияние факторов электролиза на составы КЭП [1, с. 33—40].  [c.51]

При изучении свойств КЭП Ni—АЬОз, полученных из суспензий, содержащих один из видов порошков корунда М.1, М2, М5 или М14, было показано, что высокая износостойкость покрытий наблюдается при соосаждении более мелких частиц (Ml и М2) [107].  [c.64]

Изучены свойства бронзовых покрытий, выделенных из суспензии, содержащей хлориды олова и меди, а также частицы a-BN [37]. В результате моделирования были получены зависимости коэффициента трения и и переходного электрического сопротивления Ra (Ом) от плотности тока 1к (А/м ), pH суспензии, концентрации нитрида бора С (кг/м ) и температуры электролита t ГС)  [c.86]

В литературе подробно описаны [54, 56] методы получения и свойства инструмента, полученного цементированием алмазных частиц никелем, медью или хромом. Используются стандартные электролиты с алмазным слоем, в который погружается изделие или обычные суспензии с взвешенным в них порошком.  [c.143]

Таким образом, на данной стадии возможны два подхода к гидромеханике неньютоновских жидкостей. С одной стороны, можно сконцентрировать внимание на проблемах течения, для которых (в некотором смысле требующем определения) используется лишь кажущаяся вискозиметрическая вязкость, так что неадекватность уравнения (2-3.4) считается несущественной. Такая система представлений характерна для предмета, который мы будем называть обобщенной ньютоновской гидромеханикой. Этот подход может быть оправдан либо вследствие того, что в рассматриваемом течении существенна лишь вискозиметрическая вязкость (к этой категории относятся ламинарные течения, по крайней мере в первом приближении), либо вследствие того, что рассматриваемый материал имеет зависящую от сдвига вискозиме-трическую вязкость, но не обладает никакими другими неньютоновскими свойствами. (К этому типу зачастую относятся суспензии твердых частиц, но, к сожалению, нельзя отнести более важные в практическом отношении полимерные расплавы и растворы.)  [c.66]


Бадеев Ю. С., Влияние реологических свойств суспензий на характер движения в них шарообразных тел, Обогащение руд ,  [c.399]

Показано, что вязкость дисперсных систем, таких, как суспензии зерен рисового крахмала в четыреххлориотом углероде и парафине, снижается с увеличением скорости сдвига [635]. Было, однако, показано [334], что суспензии сферических полимерных частиц в водных растворах глицерина обладают свойствами ньютоновской жидкости. Что же касается влияния скорости сдвига на вязкость высокополимерных растворов [312], то оно заметно при степени полил1еризацпи более 2000. Авторы работы [368] считают, что указанное влияние градиента скорости обусловлено дефорд1ациеп частиц под действием напряжений сдвига, их пористостью, а также преимущественной ориентацией. В работах [383, 454, 456] предложена модель, согласно которой частицы золя увлекаются вязким потоком, в котором существуют напряжения сдвига, причем соответствующее изменение конфигурации системы отвечает принципу наименьшего действия. Таким образом, подразумевается существование сил, стремящихся переместить частицы с линий тока в направлении уменьшения градиента скорости. В результате формируется такой профиль концентрации частиц, максимум которого находится в области самого малого градиента скорости (разд. 2.3).  [c.198]

Модельный состав ПС50-50 имеет малую зольность, равную 0,01 0,05%, поверхность моделей хорошо смачивается суспензией из гидролизованных растворов этилсиликата 32 и 40. Высокая технологичность состава связана в основном с его хорошими свойства-  [c.179]

Классификация связующих растворов. Главным факторюм, определяющим результаты процесса гидролиза, является количество воды. Оно определяет свойства полученных связующих растворов, прочность оболочек и технологию сушки. Поэтому в производственных усгювиях при приготовлении суспензии возможно три типичных варианта гидролиза ЭТС  [c.215]

При наличии таких структур прочность связующего повышается, увеличивается и прочность формы. В итоге структура связующего имеет вид неорганического полимера. Эти растворы о Зладают свойствами истинных растворов. Гидролизованный раствор содержит более 18% Si02, его вязкость не изменяется при хранении пленка раствора сохнет на воздухе медленно и обратимо. При этом растворы способны набухать при нанесении следующего споя суспензии. Раствор легко гидролизуется влажным аммиаком с образованием геля кремниевой кислоты. При этом пленка твердеет необратимо, т е. происходит аммиачная сушка. Оболочка имеет высокую прочность. Прочность формы на изгиб составляет 7 - 10 МПа. Стойкость до желатинизации до 400 сут.  [c.217]

Для защиты от коррозии в морской и пресной воде металлических поверхностей гидротехнических сооружений успешно применяют эмали ЭП419 (на основе смолы ЭД-14, ЭД-16) и ЭП-420 (на основе смолы ЭД-20), представляющие собой суспензию пигментов и наполнителей в растворе эпоксидной смолы с добавлением пластафикатора—сланцепиролизного ЛСП-1. Для эксплуатации изделий в условиях повышенной влажности применяют эмали ЭП-969, ЭП-793 (на основе смолы ЭД-20), которые сохраняют длительное время свои защитные свойства при значительном перепаде температур (213—423 К).  [c.132]

Политетрафторэтиленовая пленка может быть получена разными способами. Наиболее широко известно ее получение по следуюш,ей схеме 1) прессование при комнатной температуре цилиндрической заготовки из порошка 2) спекание заготовки 3) снятие с заготовки резцом непрерывной толстой пленки 4) вальцевание до нужной толщины одновременно осуществляется ориентация. Известен способ осаждения порошка из суспензии на металлическую подложку, на которой осуществляется спекание. Этот способ позволяет получить пленку в несколько слоев, но только неориентированную. Политетрафторэтиленовая пленка находит относительно широкое применение благодаря своим свойствам, хотя она и дорогая. Там, где по условиям работы необходимы свойства этой пленки, ее используют для изоляции особых термостабильных конденсаторов, в кабельной технике, в производстве мелких электрических машин, в аппаратуре как гибкую изоляцию высокой нагревостой-кости. Кабельная пленка имеет толщину от 20 до 150 мм, конденсаторная — от 5 до 20 мкм. Пленка из сополимера тетрафторэтилена с гексафторпропиленом по своим параметрам близка к политетрафторэтиленовой.  [c.206]

Натуральный каучук получается из латекса — сока некоторых тропических деревьев. Латекс представляет собой водную суспензию каучука с примесью некоторых солей, белковых и сахаристых веществ. Полученный из латекса путем осаждения — коагуляции и последующей обработки, освобождающей его от вредных примесей, каучук представляет собой материал, по свойствам сильно отличающийся от резины. Натуральный каучук есть полимер углеводорода — изопрена sHg и имеет такое строение  [c.210]

Покрывные сверхнагревостойкие составы бывают органосиликатные и металлофосфатные. Первые получаются при взаимодействии кремнийорганических полимеров, силикатов и некоторых окислов с введением разных добавок, например отвердителей. Они обладают неплохими технологическими свойствами в виде суспензий составных частей в толуольных растворах кремнийорганических полимеров. Как правило, эти материалы в отвержденном состоянии имеют хорошую адгезию к металлам, большинству пластмасс, керамике, выдерживают резкие перепады температур, хорошо защищают от повышенной влажности и воды. Большинство органссиликатных покрытий могут длительно работать при 500—700° С. Отверждение может быть при комнатной и повышенной температурах. Для примера укажем на электрические свойства некоторых из этих покрытий при повышении температуры от 20 до 700° С р снижается с 10Ч до Ю Ом-м, о с 10 до 5 МВ/мм.  [c.246]

Полистирол [—Hj — СН — flH., —1 . получат полимеризацией мономерного стирола Аморфный полистирол получают в виде блоков, эмульсий, суспензий или растворов, а изотактиче-ский — в присутствии специальных катализаторов. Полистирол термопластичный материал с высокими диэлектрическими свойствами. Для электроте.хнических целей в основном применяется блочный полистирол, эмульсионный имеет худшие диэлектрические показатели и используется для изготовления плиточных пенопластов конструкционного назначения, изотактический в промышленности из-за,трудностей переработки в изделия не выпускается.  [c.206]


Жидкие диэлектрики отличаются значительно более высокой электрической прочностью, чем газы, несмотря на большую зависимость электрических свойств жидкостей от загрязнений, которые в, газообразном состоянии почти не изменяют электрической прочности газа. Основной причиной более высокой прочности жидких диэлектриков является их более высокая (в 2000 раз) плотность и значительно меньшие расстояния между молекулами. Однако примеси полярных жидких (эмульсии) или твердых (суспензии) веществ порождают новые формы теплового НЛП ноннзацнонпого (в случае газообразных включений) иробоя, которые снижают пробивное напряжение даже неполярных жидкостей, у которых в чистом виде пробой носит характер ударной, ионизации, как у газов, но вследствие значительно меньшей длины свободного.пробега ионов для развития процесса ударной ионизации требуется более высокое напряжение.  [c.32]

Применяется он в виде пластмасс, пленок и суспензий. Из фторопласта-3 могут быть изготовлены слолсные детали с большим количеством отверстий и металлической арматуры (катушки, основания, гнезда, панели различного вида). Из суспензии фторопласта-3 могут, быть получены электроизоляционные покрытия на токоведущих частях, проводах и кабелях, на изоляторах, для улучшения электрических свойств и повышения химостойкости и коррозионной устойчивости.  [c.70]

В обоих случаях затрудняется образование окисных пленок и возникает контакт ювенильных поверхностей, что приводит к образованию адгезионных связей и интенсивному схватыванию. Интенсифицируются процессы упрочнения и разупрочнения материала, фазовые переходы, а для неметаллических материалов в вакууме может происходить испарение отдельных составляющих. Интервал условий (давления, температуры), в которых происходит резкое изменение свойств пары трения, для различных материалов изменяется в достаточно широком диапазоне. Работоспособность сопряжений в этих условиях может быть обеспечена при применении специальных Твердых смазочных покрытий Эффективность этих покрытий зависит от выбора состава суспензии, способа ее нанесения, от материала подложки и обработки ее поверхности. В качестве критерия для оценки работоспособности твердых смазок при их испытании принимают обычно время работы покрытия до резкого необратимрго повышения коэффициента трения. Толщина покрытия на стадии проектирований определяется из условия обеспечения необходимого зазОрй в со-  [c.253]

Несколько иной характер зависимости упругих и прочностных свойств от содержания нитевидных кристаллов имеют композиционные материалы, изготовленные на основе вискериэо-ванных тканей. На рис. 7.9 приведены экспериментальные данные для стеклопластиков, изготовленных на основе ткани сатинового плетения. Вискери-зация ткани осуществлялась осаждением нитевидных кристаллов ТЮ2 из аэрозоля и A1N из суспензии. На каждую точку, приведенную на графике, испытано по семь образцов. Коэффициент вариации значений характеристик не превышал 10 %.  [c.213]

Композиционные покрытия никель—двуокись циркония, никель—двуокись церия, медь—окись алюминия получены методом химического восстановления из суспензий, в которых дисперсионной средой являются щелочные растворы химического никелирования или меднения, а дисперсной фазой — один из вышеуказанных окислов. Изучены условия образования и ряд физико-механических свойств покрытий. Показано, что введение окисных добавок в растворы химической металлизации изменяет скорость осаждения покрытий и приводит к сдвигу стационарного потенциала. Лит, — 3 назв., ил. — 2.  [c.258]

Электрическое сопротивление снеков измерялось мостом пере" менного тока в интервале температур 20—600 °G (рис. 3). Видно, что электрическое сопротивление спеков 1G и 3G практически одинаково во всем исследуемом температурном интервале. GneK 3G при температуре 250-°G имеет ру = 2.4-10 Ом-см, что соответствует pv оксида хрома. Принимая во внимание, что пробивное напряжение покрытий,, полученных из суспензий 1G и 3G, одинаково и составляет 22 кВ/мм, можно предположить, что количество образовавшихся в спеках хромата стронция и хромита цинка мало и не оказывает существенного влияния на электрические Свойства полученных композиций.  [c.139]

Другим типом материалов, используемых для постоянных магнитов, являются продолговатые магнитные частички из композиционного материала. Их называют Лодекс . Продолговатые железокобальтовые частички получают электрохимическим методом. Жидкая суспензия, содержащая эти частицы с добавкой свинца, уплотняется и измельчается в порошок, из которого прессованием получают магнит необходимой формы. Свойства магнита достаточно хорошие и могут регулироваться в широких пределах в зависимости от доли введенного свинца.  [c.445]

Краска — это суспензия твердых минеральных, как правидо, частиц в олифе, растительном масле, водной дисперсии полимеров. В результате потери летучих компонентов или химических реакций краска, нанесенная на твердую поверхность тонким слоем, превращается в покрытие, причем непрозрачное и, как правило, без блеска. Минеральные частицы, входящие в краску, разделяют по назначению на две группы пигменты и наполнители. Пигменты — частицы окрашенных веществ, чаще всего это или окислы металлов, или соли. Назначение пигментов — придавать цвет покрытию. Иногда пигменты попутно выполняют и роль вещества, повышающего защитные свойства покрытия. Назначение наполнителей — увеличивать объем лакокрасочного материала, снижать удельный расход наиболее дорогих компонентов краски — пленко-образователя и пигментов.  [c.10]

Таким образом, малая зависимость уплотнения от размера частиц твердой фазы (при одинаковом ее объемном содержании и равноосности частиц) для жидкофазного спекания под давлением, значительно превышающим капиллярное, является отражением независимости реологических свойств суспензий от размера частиц твёрдой фазы. В соответствии с развитыми представлениями это подтверждается в целом и для системы вольфрам — медь. В то же  [c.91]

Политрифторэтилен (фторопласт-3) по свойствам близок к полиэтилену, но обладает более высокой теплостойкостью. Используется в виде порошков и суспензий для нанесения покрытий на поверхности контейнеров, предназначенных для хранения аккумуляторной серной кислоты.  [c.126]

В настоящее время получили распространение уралкиды, представляющие собой алкидные смолы, модифицированные изоцианатом путем частичной замены фталевого ангидрида на изоцианат. В отличие от двухкомпонентных полиуретановых систем уралкидные материалы являются однокомпонентными, характеризуются меньшей токсичностью. Промышленностью выпускаются быстросохнущие эмали УРФ-1128 различных цветов и грунтовка УРФ-0106. Они представляют собой суспензии пигментов в уралкидном лаке с добавкой сиккативов. Предназначаются для окраски изделий, эксплуатирующихся в атмосферных условиях. Освоен выпуск также грунтовки УРФ-0110, обладающей ускоренным режимом сушки (4 ч при 18—20 °С) и лучшими защитными свойствами. Она представляет собой суспензию антикоррозионных пигментов и наполнителей в уралкидном связующем.  [c.74]

Для того чтобы выбрать оптимальные соотношения пигментов, были исследованы пассивирующие свойства водных вытяжек при различных соотношениях пигментов. На рис. 8.17 приведены потенциалы стали в водных вытяжках с разными соотношениями фосфата хрома и тетраоксихромата цинка в суспензиях. Из рисунка видно, что в вытяжке из чистого фосфата хрома потенциал стали отрицателен (—400 мВ) и образец подвергается сильной коррозии (см. табл. 8.5). В вытяжке из чистого тетраоксихромата цинка потенциал стали также отрицателен (около —300 мВ). При использовании водных вытяжек из смесей с содержанием фосфата хрома более 40% потенциал стали устанавливается на уровне 400—500 мВ, что свойственно пассивному состоянию стали.  [c.143]


Соотношение фосфата цинка и хромовокислого гуанидина со-х тавляло 75 1. Поскольку фосфат цинка содержит мало водорастворимых солей, исследования проводили не в водных вытяжках, а в водных суспензиях при перемешивании. Оказалось, что в водной суспензии фосфата цинка сталь не переходит в пассивное состояние (рис. 9.14), а в суспензии, содержащей фосфат цинка и хромовокислый гуанидин (75 1), она переходит в пассивное состояние уже при потенциале 0,1 В. Емкость электрода в этом случае сильно снижается. Эти результаты полностью подтвердились при испытании покрытия на основе грунтовки ГФ-0119, где вместо хро-матных пигментов применяли фосфат цинка с малой добавкой хромовокислого гуанидина. Иключение из рецептуры хроматных пигментов позволило значительно снизить токсичность грунтовки при сохранении ее высоких защитных свойств.  [c.183]

В книге излагаются теоретические основы и способы получения композиционных покрытий и материалов. Приведены состав этих материалов и характеристика компонентов (металлы и тугоплавкие окшды, бориды, нитриды, полимерные органические вещества и волокнистые материалы), а также формулы для расчета состава суспензий. Описаны свойства материалов и образующихся покрытий.  [c.2]

Для расчетов составов комбинированных покрытий и оценки их свойств предложен ряд формул [1, с. 25— 32 11]. При выводе указанных ниже част ных формул (15) и (16) авторы исходили из предположения, что объемное содержание частиц в покрытии равно содержанию частиц (в суспензии и покрытие, вероятно, образуется на вертикально расположенной поверхности катода в суспензии без перемеши-  [c.40]

Природа частиц и их поверхности. Физические и химические свойства частиц влияют на их адгезию к катоду и зарастаемость осадком. Плотность частиц порошка связана с устойчивостью суспензии. Лучше всего использовать частицы плотностью, близкой к единице или чуть больше (плотность применяемых электролитов равна 1050—1400 иг/м ).  [c.56]

Шлифовальные круги и ленты с абразивными свойствами производят при включении в КЭП частиц карборунда. Покрытия получают на горизонтально расположенных катодах в сульфатхлоридном электролите (pH 1,2—1,3) при 45—50 °С и г к=0,5—1 кА/м . Частицы размером 80—100 мкм взмучиваются сжатым воздухом в течение 2 мин после каждых 12—17 мин электролиза. Концентрация частиц в суспензии 2—4 -кг/м .  [c.145]


Смотреть страницы где упоминается термин Суспензии свойства : [c.350]    [c.350]    [c.350]    [c.391]    [c.239]    [c.207]    [c.453]    [c.93]    [c.27]   
Композиционные покрытия и материалы (1977) -- [ c.27 , c.34 , c.35 ]



ПОИСК



Акустические свойства морских грунтов. Плотность и упругость суспензий. Особенности трехкомпонентных смесей. Коэффициент отражения от различшх типов грунтов

Свойства суспензий и оболочек

Суспензии

Суспензии, неньютоновские свойства

Суспензии, неньютоновские свойства движении в трубе

Суспензии, неньютоновские свойства константы вязкости

Суспензии, неньютоновские свойства скорость осаждения

Физико-химические свойства суспензий, их устойчивость и контроль



© 2025 Mash-xxl.info Реклама на сайте