Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упорядочения энергия

В разделе 1.4.4.2 говорилось, что под термином "диссипация" мы понимаем процесс взаимного превращения энергий, а не только превращения различных видов более упорядоченной энергии в тепловую с последующим се рассеянием. Не смотря на такую оговорку, рассматриваемые здесь примеры остаются случаями диссипации.  [c.274]

Подобные явления называются процессами упорядочения . Энергия твердого тела очень сильно возрастает в небольшом интервале температур ниже критической Гкр., причем произведение ио порядку величины равно  [c.317]


Дополнительную сложность представляет наличие в пермаллоях, кроме изотропного упорядочения, еще одного процесса упорядочения — направленного. Направленное упорядочение заключается в локальной перестройке под действием внутреннего магнитного поля атомной структуры твердого раствора путем перемещения атомов на малые расстояния. При направленном упорядочении энергия системы понижается из-за расположения одноосных дефектов (например, пары атомов Fe—Ni) вдоль направления внутреннего магнитного поля (вектора спонтанной намагниченности М ). Процесс направленного упорядочения происходит при температурах ниже точки Кюри и в пермаллоях стремится выстроить все пары Fe-Ni в одном направлении, заданном спонтанной намагниченностью.  [c.549]

Можно сказать, что не только в общей открытой системе, через которую протекает упорядоченная энергия с рождением энтропии, но и в отдельных открытых частях такой системы идут сразу два процесса деградация по пути к хаотическому тепловому движению молекул и самоорганизация с усложнением структур и роста относящейся к ним доли информации (т.е. уменьшение энтропии).  [c.70]

Чтобы часы привести в действие, нужно завести их пружину. Фактически мы снова преобразуем неупорядоченную форму энергии (тепловую энергию, выделившуюся в организме при усвоении пищи) в упорядоченную энергию (движение руки). Рука передает энергию от организма к пружине часов путем совершения работы.  [c.84]

Диссипация энергии есть процесс перехода части энергии упорядоченного процесса в энергию неупорядоченного процесса, а в конечном итоге - в теплоту. Переход диссипативной системы в упорядоченное состояние связан с неустойчивостью предшествующего, неупорядоченного, состояния, когда параметры системы превышают некоторые критические значения. Первоначально устойчивая диссипативная структура в процессе эволюции системы, достигая порога неустойчивости, начинает осциллировать, а возникающие в ней флуктуации приводят к самоорганизации новой, более устойчивой на данном иерархическом уровне диссипативной структуры.  [c.61]

Потенциальная энергия взаимодействия двух атомов для отрицательных значений х обычно существенно отрицательна (т. е. соответствует отталкиванию), и поэтому S и х) положительны, что соответствует расширению твердых тел при их нагревании. Немногие известные случаи сжатия твердых тел при нагревании связаны преимущественно с эффектами магнитного упорядочения спинов электронов. Для сплавов с малым коэффициентом расширения, например таких, как инвар, тепловое расширение и магнитное сжатие взаимно компенсируют друг друга в той области температур, которая представляет практический интерес.  [c.239]


Представим себе небольшую организацию, занимающуюся сбытом телевизоров. Пока заказов бьшо мало, организация снимала пару комнат, состояла из трех человек. Но вот поток заказов начал возрастать. Вначале организация каким-то образом выкручивалась, затем просто перестала справляться с потоком. Пришлось строить отдельное здание, нанимать новых людей, организовывать внутреннюю структуру организации более сложным образом. Здесь интенсивность потока заказов явилась аналогом потока энергии. Превышение критического значения этого потока привело к реорганизации системы и возникновению новой диссипативной структуры, более упорядоченной, чем предыдущая.  [c.103]

D гидродинамике увеличение скорости течения жидкости приводит к смене ламинарного режима течения турбулентным. До недавнего времени это отождествлялось с переходом от порядка к хаосу. В действительности же обнаружено, что в точке перехода происходит упорядочение, при котором часть энергии системы переходит в макроскопически упорядоченное вихревое движение. Завихрения в турбулентном движении являются, таким образом, диссипативными структурами.  [c.275]

Степень упорядоченности вещества в каждом равновесном состоянии определяется долями индивидуальных энергий в его объеме. Нами такие доли рассчитаны для неона, аргона, криптона и ксенона в их критических точках.  [c.35]

Теория Гортера — Казимира и теории, связанные с ней. Для объяснения термодинамических свойств сверхпроводников предлагались различные двухжидкостные модели. Все они основываются на двух главных предположениях 1) существует конденсированное состояние, энергия которого характеризуется некоторым параметром упорядочения 2) вся энтропия связана с наличием возбуждений отдельных частиц аналогично тому,  [c.685]

Мы уже видели, что любая упорядоченная энергия (с энтропией 5 = 0 (рис. 3.7) может быть всегда полностью переведена в любой другой вид энергии напротив, если энергия в той или иной степени неупорядочена (S> >0), то на ее способность к превращениям второй закон налагает определенное ограничение. Чем больше эта энтропия, тем энергия менее качественна и тем меньше высококачественной (безэнтропийной) энергии (например, работы или электроэнергии) она в данных условиях может дать. Это означает, что безэнтропийная энергия может служить как бы эталоном, общей мерой качества, работоспособности любого вида энергии. Она и была названа эксергией. В такой (общей мере) эксергии, конечно, спрятана внутри энтропия как некая базовая величина это необходимо, но недостаточно. Кроме нее в эксергию неизбежно должны входить и другие величины, характеризующие как энергию, так и ту окружающую среду,в которой энергия используется.  [c.156]

Поясним, в чем тут дело. Напомним, что открытая физическая система построена по принципу рис. 39. Открытая система X получает извне некоторую упорядоченную энергию с мощностью Р и потоком негэнтропии (-.5,). Если, например, температура системы X равна Г, а поступающая энергия имеет энтропию, которую можно охарактеризовать эффективной температурой ГеГГ, то поток НСГЭНТ-ропииравен -5, = —Г ).  [c.329]

Следовательно, в рассматриваемой термодинамической системе процессы могут пойти в одном из двух направлений — либо в направлении хаоса неупорядочения энергии), либо в направлении упорядочения энергии (рис. 8.36). Какое из этих направлений наиболее вероятно Природа избрала первое направление (рис. 8.37), хотя не исключает и второе. Это вовсе не означает, что термодинамическая система стремится к беспредельному хаосу. Она лишь стремится к наиболее вероятному состоянию хаоса. При движении системы к наиболее вероятному состоянию хаоса самым различным образом меняются ее как микросостояния, так и макросостояния. Достигнув наиболее вероятного состояния, система прекращает изменять свое макросостояние (не изменяются р, V, Г). Этому макросостоянию могут соответствовать большое, но конечное число микросостояний.  [c.86]

Работа всегда связана с перемещением макроскопических тел в пространстве, например перемещением поршня, деформацией оболочки, поэтому она характеризует упорядоченную (макрофизи-ческую) форму передачи энергии от одного тела к другому и является мерой переданной энергии.  [c.13]

Это соотношение, которое носит имя Эйнштейна, замечательно тем, что устанавливает связь между двумя совершенно различными по виду явлениями. Коэффициент диффузии характеризует случайное блуждание частиц, которое приводит, в частности, к флуктуациям плотности. Подвижность же характеризует их регулярное движение под действием внешней силы. На первый взгляд это обычное механическое движение. Но оно сопровождается трением. В результате энергия этого упорядоченного движения, как говорят, Ъиссипирует, т.е. превращается в энергию хаотического движения частиц.  [c.209]


Ю.Л. Климонтович [ 18] доказал S - теорему и показал, что принцип минимума производства энтропии справедлив и в нелинейной области. Теорема позволяет оценить относительную степень упорядоченности неравновесного состояния системы и предсказать направление, в котором под влиянием внешнего воздействия изменяется термодинамический процесс, протекающий в открытой системе. В соответствии с S - теоремой принцип минимума производства энтропии утверждает, что при критических фазовых переходах через пороговые значения управляющих параметров происходит скачкообразное уменьшение энтропии (оно нормировано на постоянное значение средней кинетической энергии).  [c.28]

В настоящее время синергетика объединила физику диссипативных систем с биологией, что позволило открыть сз гь 6nojmrH4e Koro упорядочения. Но вернемся к кристаллу. Деформированный кристалл является диссипативной системой и поэтому становиться живым в том смысле, что при подводе к нему энергии он остается целостным (живым), пока способен освобождать себя от всей той энтропии, которую он вынуждерг производить в процессе диссипации энергии. Объединение подходов синергетики с материаловедением должно позволить вскрыть суть физического упорядочения в кристаллах при их деформировании, создать принципиально новые технологии получения конструкционных материалов с заранее заданными свойствами и новую теорию их механических свойств [20].  [c.31]

Динамические структуры могут возникать в различных средах. Из гидродинамики хорошо известно, что при определенной скорости движения жидкости ламинарное течение сменяется турбулентным. До недавнего времени этот переход отождествляли с переходом к хаосу. В действительности же обнаружено, что в точке перехода путем самоорганизации диссипативных сфуктур происходит упорядочение, при котором часть энергии системы переходит в макроскопически организованное вихревое движение. Переход от ламинарного течения к турбулентности является примером реализации гидродинамической  [c.62]

В процессе посткристаллизационной трансформации фрактальной структуры сплава в кристаллическую происходит пространственная перестройка и увеличение количества связей между частицами (уплотнение твердой фазы), а также упорядочение связей по 1шинам и энергиям. Несомненно, что такие процессы, происходящие с фрактальной структурой, должны быть связаны с флуктуациями выделяющейся в процессе образования дополнительных связей энергии. Поэтому данный тепловой процесс может рассматриваться как фрактальный шум. Фрактальным шумом называется последовательность случайных значений какой-либо величины, лежащей в определенных пределах.  [c.96]

Таким образом, при свободном движении наш автомобиль рассеивает упорядоченную кинетическую энергию своего движения и превращает ее в хаотическое тепловое движение молекул. Большинство существующих в природе механических систем вед т себя так же. Если говорить обобщенно, полная механическая энергия (потенциальная -в кинетическая) в них убывает, переходя в другие формы энергии, которые в конечном итоге переходят в тепловую. Такие системы принято назвать диссипативными системами (от англ, dissipate - рассеивать). Соответственно, сам процесс рассеяния энергии называют диссипацией.  [c.101]

Диссипативные структуры, как правило, высокоупорядочены. Они отличаются от равновесных структур тем, что для своего существования они требуют постоянного притока энергии извне. Очевидно, что диссипативные структуры могут формироваться лишь в диссипативных системах, находящихся в критических условиях. Переход диссипативной системы в упорядоченное состояние связан с неустойчивостью предыдущего, неупорадоченно-го. При этом определенный параметр системы превышает критическое значение. С переходом в новое структурное состояние система приобретает новый способ функционирования, обеспечивающий ее устойчивость в новом состоянии.  [c.103]

Диссипация энергии - (от англ, dissipation - рассеяние) переход части энергии упорядоченного движения в энергию неупорядоченного движения, в конечном итоге - теплоту.  [c.149]

Но где-то на уровне подсознания мы знаем, что увеличение энергии должно приводать к возрастанию хаоса. Таким образом, введением понятия "самоорганизация" ученые попытались объяснить, каким образом достижение высокой степени хаоса п системе самопроизвольно трансформирз ется в порядок. Для на> чного обоснования этого экспериментального факта бельгийским ученым Ильей Пригожиным была выведена теорема о минимуме производства энтропии в системах, находящихся в критическом состоянии [10]. Численное описание подобного рода упорядоченных "самоорганизовавшихся" структур производится, как правило, при помощи аппарата фрактальной геометрии, который оперирует с дробными мерностями D. Вообще, при помощи категории "мерность пространства" описывается большое число критических явлений.  [c.41]

Уменьшение энергии при сближении атомов возможно при упорядочении в расположении дипольных моментов. Это прояв-66  [c.66]

Возникновение доменов можно представить себе следующим образом. Взаимодействие между соседними диполями приводит к их упорядочению в кристалле. Это стремление к упорядочению передается от диполя к диполю, так что целые макроскопические области твердого тела становятся поляризованными в определенном направлении. Однако энергетически выгодным является образование не однодоменной структуры, а многодоменной. Однодоменный кристалл создает в окружающем пространстве электрическое поле, которое, как было отмечено выше, называют деполяризующим (рис. 8.14,а). Из рис. 8.14,6 видно, что уже в двухдоменном кристалле энергия деполяризующего поля меньше. Дальнейшее снижение энергии деполяризации наблюдается при образовании многодоменной структуры (рис. 8.14,е).  [c.299]

Физическая основа теоремы Нернста состоит в том, что при достаточно низких температурах существующий в системе беспорядок устраняется иод влиянием сил взаимодействия между элементарными частицалш. Это происходит в области температур, в которой энергия взаимодействия Е сравнима с тепловой энергией кТ. Следовательно, можно ввести характеристическую температуру Н порядка Elk, соответствующую переходу системы в новую упорядоченную фазу или состояние. При Г=0 наблюдается крутой наклон на верхней из кривых, изображенных на фиг. 2, а в теплоемкости при постоянном внешнем параметре (равной TdS/dT) наблюдается четко выраженный максимум. [В случае перехода первого рода на (6 —Г)-кри-вых имеет место разрыв непрерывности и, следовательно, скрытая теплота.) При температурах много ниже 0 энтропия очень слабо зависит от внешнего параметра, и вещество теряет свою эффективность в качестве рабочего вещества охладительного цикла.  [c.422]


Выбор параметра упорядочения в некоторой степени произволен. Мы будем следовать Маркусу, Максвеллу и другим и использовать параметр ш, изменяюпщйся от единицы при Т =0"К до нуля при Г = Ткр, причем энергия конденсации относительно нормального металла равна  [c.686]

Существуют различные пути для разработки более удовлетворительной теории, основывающейся на модели с энергетической щелью. Было бы желательно ввести параметр упорядочения. Им, например, могло бы быть число возбужденных электронов возб. моншо предположить, что энергия конденсации уменьшается с увеличением Ивозб. и обращается в нуль при определенном значении Ивозб. ( кр.) которое должно соответствовать числу электронов в нормальной фазе при критической температуре. Другая возможность состоит в том, чтобы в качестве параметра упорядочения использовать ширину щели. Подобную теорию следует развивать, если эксперимент или теория укажут на действительное существование энергетической щели. Например, теория Гортера—Казимира в своих выводах об изменении глубины проникновения магнитного поля с температурой лучше всего оправдывается прп высоких температурах, вблизи Возможно, что правильная теория соответствовала бы модели Гортера—Казимира при высоких температурах (Г>0,5 Т р ) и модели с энергетической щелью прн низких (7 <0,5 кр.)-  [c.689]


Смотреть страницы где упоминается термин Упорядочения энергия : [c.607]    [c.424]    [c.86]    [c.90]    [c.19]    [c.77]    [c.31]    [c.151]    [c.181]    [c.353]    [c.37]    [c.54]    [c.177]    [c.267]    [c.37]    [c.70]    [c.686]   
Физика дифракции (1979) -- [ c.382 ]



ПОИСК



Связь с энергиями упорядочения

Упорядочение

Энергия взаимодействия системы одинаковых внедренных атомов и их упорядочение па междоузлпях



© 2025 Mash-xxl.info Реклама на сайте