Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частота среза

Предусилитель предназначен для усиления и частотной селекции сигнала в полосе анализа. Нижняя частота среза предусилителя фиксирована и равна 1 кГц, верхняя — регулируется от 30 до 100 кГц. Коэффициент усиления предусилителя — в пределах 200—300.  [c.80]

Рис. 18. Экспериментальная кривая дисперсии для продольных волн в композиционном материале на основе волокон вольфрама и алюминиевой матрицы (а) [168] и вторая ветвь и частота среза в окрестности 4 МГц (б) Рис. 18. Экспериментальная <a href="/info/329298">кривая дисперсии</a> для <a href="/info/12458">продольных волн</a> в композиционном материале на основе волокон вольфрама и <a href="/info/38900">алюминиевой матрицы</a> (а) [168] и вторая ветвь и частота среза в окрестности 4 МГц (б)

Выбор коэффициента q зависит от вида задачи, в которой используется модель. В работе [368], например, предлагается выбирать q таким образом, чтобы скорость распространения первой волны в модели стремилась на высоких частотах к скорости поверхностной волны Рэлея. Б этом случае достигается почти идеальное совпадение дисперсии этой волны с дисперсией первой волны Лэмба (д = 0,88 при v=l/3). В другой работе [371] предлагается вычислять значения q из условия совпадения частот среза модели и реального стержня (кривые 5 и 5 на рис. 5.3). Вычисления показывают, что это значение q дает минимум абсолютного интегрального отклонения дисперсионных кривых обеих волн модели от дисперсионных кривых волн Лэмба в интервале частот ktH = О Зл/2. Отметим, кстати, что этот диапазон частот является максимально возможным для любой двухволновой модели полосы или пластины, так как на более высоких частотах становится действительной постоянная распространения третьей волны Лэмба [229]. Из рис. 5.3 видно, что ири других значениях q можно получить совпадение дисперсий в отдельных узких участках внутри этого диапазона.  [c.151]

Расчеты показывают, что расхождения дисперсии волн в стержне и модели очень чувствительны к изменению частоты среза. В связи с этим в качестве второго условия, накладываемого на произвольные коэффициенты, примем условие совпадения частот среза, которое для произвольного стержня имеет вид  [c.152]

Управляемая машина представляет собой соединение трех частей источника энергии (двигателя), механической системы и системы управления движением. До недавнего времени можно было при исследовании колебательных явлений, происходящих в машинах, не учитывать динамическое взаимодействие этих частей машины. Динамическая независимость двигателя, механической части и системы управления обусловливалась прежде всего существенным различием их характерных постоянных времени собственные частоты механической системы располагались обычно за частотой среза системы управления, постоянная времени двигателя значительно превышала наибольший период свободных колебаний. В этих условиях только при прохождении через резонанс в процессе разгона и выбега проявлялось в какой-то мере взаимодействие источника энергии с механической системой, связанное с резким увеличением диссипации энергии на резонансных режимах в остальном же анализ и синтез функциональных частей машины могли проводиться независимо.  [c.5]


Частота со определяет максимально возмон ную частоту среза разомкнутой системы па частотах выше со управление движе-пием не может быть эффективным.  [c.137]

Тогда годограф будет целиком располагаться в правой полуплоскости, а это означает, что нарушение условий устойчивости не произойдет нн при каком значении %, а следовательно, механическая система ые будет ограничивать эффективность управления, по крайней мере в пределах выбранной динамической модели. (В действительности с увеличением х растет частота среза разомкнутой системы, а это в соответствии со сказанным выше моя ет привести к необходимости уточнения динамической модели механической системы и увеличения числа ее степеней свободы. Поэтому, строго говоря, можно констатировать лишь существенное ослабление ограничений на эффективность управления при выполнении условий (8.39).)  [c.139]

Выбираем из требований по быстродействию частоту среза желаемой ЛАХ p2 =Ю 1/с и проводим через эту точку асимптоту с наклоном—20 дБ/дек. Тогда можно принять (О3 = 1/т з = = 2,5 1/с, а ша = 1/Га = 0,162 1/с соответственно Тз = 0,4с, Та =а 6 с. В этом случае желаемые частотные характеристики La и Фа обеспечивают запас по фазе Афз = 63°.  [c.107]

Таким образом, устойчивая работа возможна при выборе как высокой (Т/ < Й1/соо). так и низкой (Tf частоты среза lTf) частотной ха-  [c.65]

Частотные характеристики модуля отношения (/ + /а)// (рис. 3) дают представление о виброизоляции при выборе различных сигналов управления. Все коэффициенты передачи активной цепи, указанные на рис. 3, считаются чисто вещественными в некоторой полосе частот 0 -I- со В где со в (О о,— собственной частоты системы без активной цепи. Реальные системы, содержащие фильтры верхних частот (ФВЧ) в цепи управления, устойчивы при этих коэффициентах и достаточно низкой частоте среза ФВЧ. Устойчивость схемы на рис. 3, в обеспечивается, если сопротивление изолируемого объекта намного больше по модулю, чем /г 1 -ф — сопротивление упругого элемента, имеющего жесткость к.  [c.68]

Цепь управления AB содержит следующие последовательно включенные элементы динамометр, предварительный усилитель, цепь коррекции, усилитель мощности и исполнительный элемент — электромеханический вибратор. Большое усиление корректирующей схемы в области низких частот может привести при наличии низкочастотных помех к перегрузке усилителя мощности и ухудшению работы AB . Применение апериодического звена в качестве первого интегратора, полосового фильтра в качестве второго интегратора и симметричное разнесение частот срезов 21 относительно частоты Юв позволяет снизить усиление корректирующей схемы на низкой частоте по сравнению с идеальными интеграторами.  [c.104]

При использовании в качестве первого и второго интеграторов полосовых фильтров разнесение частот срезов может быть получено за счет значительного увеличения емкостей более низкочастотного интегратора, а следовательно, и увеличения габаритов всей схемы. Поэтому в качестве первого интегратора применено апериодическое звено, что несущественно увеличивает усиление в области низких частот, но позволяет применить сравнительно малогабаритные конденсаторы.  [c.104]

Частота, при которой амплитуда выходного сигнала пневмореле не достигает давления питания (частота среза), находилась по характеристике пневмореле путем последовательного сокращения периода ступенчатых входных сигналов.  [c.85]

Частота среза амплитуды выходных сигналов определялась для двух случаев  [c.89]

При работе автокатода в электронном приборе, например, электронно-лучевом, пучок электронов с автокатода проходит последовательно через ряд точек на мишени или через ряд мишеней, причем в каждой точке пучок может находиться какое-то время х, после чего переходит на другую точку. Поэтому флуктуации тока катода за время, меньше чем х, усредняются и несущественны для такого прибора, так как заряд, полученный каждой точкой мишени за это время, можно выразить как = / т, где — средний за время х ток пучка, падающего на данную точку мишени. Изменения же значений / от точки к точке, наоборот, важны для стабильной работы прибора. Аналогичное действие на измеряемый в непрерывном режиме ток катода оказывает фильтр низких частот, например, интегрирующая ЛС-цепочка, имеющая частоту среза 1/х, где х = R .  [c.223]


Описанные ниже эксперименты проводились на автоматизированном измерительном комплексе с добавлением управляемого от ЭВМ фильтра низких частот с характерными частотами среза от 100 кГц до 1 Гц (через декаду). При этом меняя характерное время и снимая показания с аналого-цифрового преобразователя через то  [c.223]

Величина критического запаздывания Ткр, при котором система находится на границе устойчивости для частоты среза oj, логарифмической амплитудной характеристики, определяется из условия  [c.110]

Частота среза (о является частотой, при которой амплитудная характеристика пересекает линию 0 дб, и, учитывая, что логарифм единицы равен нулю, соответствует отношению амплитуд на выходе и входе системы, равному единице в моменты перехода от значений больших единицы к значениям меньшим единицы. Для обеспечения надежной работы следящих систем требуется, чтобы резонансная частота нагрузки была по меньшей мере на декаду выше частоты среза системы регулирования [51, 891.  [c.431]

Следовательно, частоту среза можно найти по формуле  [c.470]

При этом одновременно одинаково увеличиваются коэффициент усиления и постоянная времени апериодического звена, характеризующего сжимаемость жидкости. Однако увеличение постоянной времени не может оказать существенного влияния на устойчивость, так как оно не влияет на амплитудную и фазовую характеристики в районе частоты среза. Следовательно, увеличение устойчивости здесь осуществляется в основном за счет понижения точности привода. Передаточная функция разомкнутого привода может быть записана как  [c.76]

Апериодическим звеном можно пренебречь, поскольку его частота значительно выше возможной частоты среза. Частотная характеристика Фд-(5) показана на рис. 2 44.  [c.94]

При этом спектр импульсов биений лежит в основном в низкочастотной области. Поэтому для ослабления влияния зазора целесообразно выбрать полосу пропускания дефектоскопа, ориентируясь па подавление основной гармоники Fq с помощью режектор-ного фильтра, либо нижнюю частоту Fh среза полосы пропускания из соотношения Fji = (0,6-г-0,8) RlapQ для точечного и поперечного дефекта и из соотношения F- 0,4/ /af6 — Для продольного дефекта. Верхняя частота среза для точечного и поперечного дефектов F — fiRlaF , а для продольного — Fb = l,8/ /aFg. Ограничение полосы пропускания сверху целесообразно для подавления влияния импульсных помех, вызванных изменением напряжения сети.  [c.125]

НО ВЫСОКИХ частот ( Xi ж я) п первую мнимую ветвь па ппзких частотах. Кроме этого, дисперсия второй волны в теории Аггар-вала —Крэнча хорошо совпадает на высоких частотах с дисперсией четвертой нормальной водны двутаврового стержня (Н-стержня). В то же время приближенные теории пе замечают второй и третьей действительных ветвей дисперсии, посчитанной по точной теории. Причина состоит в том, что преобладЯ ющей формой движения, отвечающей этим ветвям, является изгиб стенки и полок, приводящий к искажению поперечного сечения стержня и который не учитывается приближенными теориями. В частности, частоты среза o)i и сог близки к изгибным резонансам стержня, в то время как частота соз определяется главным образом продольно-сдвиговым резонансом полок.  [c.166]

Это обстоятельство играет большую роль при оценке пределов применимости приближенных теорий. Игнорирование изгибных ветвей дисперсии ведет к большим ошибкам в расчетах, поэтому в качестве верхней границы применимости двухволновых приближенных теорий естественно считать первую критическую частоту, соответствующую первому максимуму мнимой ветви дисперсии. Она расположена несколько ниже изгибной частоты среза Шь Но поскольку в Н-стержне она меньше частоты продольно-сдвигового резонанса, то пределы применимости уравнений Тимошенко и Аггарвала — Крэнча оказываются примерно одинаковыми. Отсюда следует, что в практических расчетах предпочтительнее использовать более простое уравнение Тимошенко. Уравнение Аггарвала — Крэнча целесообразно ирименять при расчете двутавров с повышенной изгибной жесткостью составляющих его полос, например, сделанных из композитных материалов, пли Н-стержней с поперечными ребрами жесткости.  [c.166]

Ограничения эффективности, связанные с потерей устойчивости, обусловливаются также неидеальпостью характеристики двигателя и звеньев цепи обратной связи. Пусть, наиример, в цепи обратной связи при управлении по выходной координате имеется апериодическое звено тогда ii o = х/(тос + 1), где Тос— постоянная времени этого звена. Подробный анализ влияния величины Too на эффективность и устойчивость системы управления проведен в [59J. При этом показано, что полученные выше ограничения остаются в силе, если 1/тос> в этом случае влияние Too проявляется за частотой среза исходной системы и поэтому не имеет существенного значения. Если нее I/tq , возможная эффективность системы управления снижается в этом случае условие устойчивости принимает форму liz p i/ ) <1, где kt — наименьшая собственная частота, превышающая 1/тоо- Аналогичные выводы могут быть сделаны и для других видов управления.  [c.137]

Амплитудная логарифмическая характеристика (ЛАХ) системы управления пересекает ось координат на частоте среза oJ pi = = 56 1/с. Запас по фазе Аф = [c.107]

При включении ФВЧ в цепь управления частота среза должна выбираться из условий устойчивости и заданной низшей частоты юн рабочего диапазона, где степень гашения В (шмин) равна гВд, 0<г<1 Бо — гашение на плоском участке частотной характеристики. Например, для схемы с управлением по силе / получаем неравенство  [c.69]


Рассчитанная по ней ЛАФЧХ приведена на рис. 4, а. Из ее рассмотрения видно, что АСССН обладает достаточной степенью устойчивости. В частности, запас устойчивости по амплитуде равен 14 дб, а по фазе 45°. Частота среза составляет с —2 сек- . Кривая переходного процесса, полученная расчетом при возмущении системы единичной толчкообразной функцией, представлена на рис. 4, б. Анализ кривой показывает, что время переходного процесса /п=3,05 сек, перерегулирование не превышает 17%, логарифмический декремент затухания.  [c.137]

В целом для парогенераюров сверхкритического давления характерно меньшее время основного изменения давления и расхода по сравнению со временем основного изменения температуры в выходных сечениях пароводяного тракта. Результаты расчетов показывают, что парогенератор может рассматриваться как фильтр высоких частот по всем основным каналам. Частота среза не превышает 5—10 рад/с для всех нагрузок регулировочного диапазона. При этом частота среза для температур рабочей среды составляет 0,5—1 рад/с.  [c.180]

Как известно из работ [67, 83], условием устойчивости систем с обратными связями является то, что в разомкнутой системе отставание по фазе должно быть менее 180° при частоте среза, т. е. в месте пересечения логарифмической амплитудной частотной характеристики с осью частот. Представляет интерес влияние на устойчивость положения поошня в гидроцилиндре а, т. е. изменение условий устойчивости по ходу исполнительного цилиндра. Для этой цели построены логарифмические амплитудные и фазовые характеристики привода, параметры которого выбраны так, что при а = 0,5, т. е. при среднем положении поршня в цилиндре, привод находится приблизительно на границе устойчивости.  [c.61]

На рис. 2.29 по оси ординат отложены фазовый сдвиг ф в градусах и отношение амплитуд А в децибеллах. По оси абсцисс в логарифмическом масштабе отложена частота f в герцах. При среднем положении поршня (а = 0,5) амплитудная характеристика пересекает ось частот при частоте f = 80 гц. При этом запас по фазе составляет всего 10°, т. е. отставание по фазе равно 170 . Привод находится около предела устойчивости. При крайних положениях поршня (а = 0,1 и а = 0,9) частота среза увеличилась до ПО гц, и запас по фазе при этом увеличился до 18°, т. е. отставание по фазе равно 162°. Худшим с точки зрения условий устойчивости при прочих равных условиях является среднее положение поршня в цилиндре, т. е. а = 0,5. Этот вывод позволяет существенно упростить задачу анализа, так как при а = 0,5, Ti = = Т2 и, следовательно, передаточная функция привода упроща-  [c.61]


Смотреть страницы где упоминается термин Частота среза : [c.247]    [c.52]    [c.309]    [c.147]    [c.150]    [c.152]    [c.152]    [c.164]    [c.164]    [c.165]    [c.166]    [c.108]    [c.135]    [c.103]    [c.103]    [c.295]    [c.457]    [c.64]    [c.93]    [c.96]   
Классическая механика (1980) -- [ c.247 ]

Динамика управляемых машинных агрегатов (1984) -- [ c.137 ]

Цифровые системы управления (1984) -- [ c.459 ]

Системы человек-машина Модели обработки информации, управления и принятия решений человеком-оператором (1980) -- [ c.144 , c.208 ]



ПОИСК



Срезы кварн,а, обеспечивающие улучшение спектра частот

Срезы кварца с минимальным температурным коэффициентом частоты

Частота среза граничная

Частота среза нормированная



© 2025 Mash-xxl.info Реклама на сайте