Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Удельная объемная сила давления

В дальнейшем ограничимся рассмотрением таких видов потерь давления в двухфазном потоке, которые вызываются только наличием сил трения и объемных сил тяжести. Для этого проанализируем стационарное, стабилизированное, одномерное течение адиабатического, несжимаемого двухфазного потока кольцевого типа без волнообразования на границе раздела фаз в плоском канале постоянного сечения (рис. 1). В этих условиях потерями напора вследствие ускорения потока, наличия местных сопротивлений и прочими видами потерь напора можно пренебречь, за исключением потерь давления на трение и нивелирного напора. При движении этого потока в условиях отсутствия сил тяжести (g=0, ближе всего к этим условиям приближается течение двухфазного потока в горизонтальной трубе) полный перепад давления связан в основном только с диссипацией энергии потока вследствие трения. При подъемном (против сил тяжести) движении того же потока в вертикальном канале ( > 0) в дополнение к этим потерям добавляются потери напора, вызываемые необходимостью совершения работы против сил тяжести. Эти дополнительные потери давления обычно принято учитывать с помощью так называемого нивелирного напора. На ранних стадиях изучения двухфазного потока, когда он рассматривался как некоторый гомогенный поток с постоянной по сечению приведенной плотностью P j,(j= Р (1 — Р) + Ч-р"Р, где индексы ш " обозначают соответственно жидкую и газовую фазу р — объемное расходное газосодержание, рекомендовалось [3, 4] вычислять величину удельного нивелирного напора по следующей формуле  [c.164]


Для сушки многих материалов целесообразно и экономически выгодно применять в качестве сушильного агента перегретый водяной пар атмосферного давления или перегретый пар удаляемого из материала растворителя [12, 26, 30]. Использование в качестве сушильного агента перегретого водяного пара атмосферного давления приводит к интенсификации переноса теплоты и массы внутри сушимого материала, увеличению движущей силы и кинетических коэффициентов переноса массы в пограничном слое, возможности применения высоких начальных температур сушильного агента без увеличения пожароопасности, уменьшению капитальных и эксплуатационных затрат вследствие более высокой удельной объемной теплоемкости водяного пара, снижению расходов теплоты за счет замкнутой циркуляции сушильного агента и экономически целесообразной утилизации большей части теплоты, затраченной на испарение влаги из материала.  [c.179]

Насос, в котором жидкая среда перемещается за счет сил вязкостного трения, назовем насосом трения В этом насосе энергия может сообщаться гипотетической жидкости с конечной величиной вязкости, но с плотностью, равной нулю в машине будет происходить приращение давления, т.е. удельной объемной энергии. Легко заметить, что для насоса трения должна существовать оптимальная величина вязкости жидкости, при которой эффективность работы машины будет экстремальной. Строго говоря, насосов, в которых действуют только силы трения, не существует. Легко построить серию насосов, в которых преобладающее влияние сил трения постепенно сменяется влиянием сил инерции. В чистом виде силы трения проявляются только при ламинарном режиме течения жидкости.  [c.174]

Тело давления является объемной эпюрой вертикальной составляющей силы давления, каждая ордината которой отнесена к удельному весу жидкости  [c.39]

Уравнение Бернулли для элементарной струйки идеальной жидкости. Для вывода уравнения возьмем элементарную струйку несжимаемой жидкости (рис. 22.7) и выберем на ней два произвольных сечения 1—1 и 2—2, нормальных к линиям тока. Будем считать движение идеальной жидкости установившимся, т. е. объемный расход V на участке 1—2 неизменным. Силы внутреннего трения отсутствуют, жидкость находится только под действием массовых сил силы земного тяготения и силы гидромеханического давления. Расстояния от центров тяжести сечений до произвольной горизонтальной плоскости сравнения О—О равны Zi и г . На плош,ади живых сечений f j и в их центрах тяжести действуют давления и ра, скорости жидкости в соответствующих сечениях Wy и w . Определим удельную энергию жидкости (энергию, отнесенную к единице массы жидкости, Дж/кг) в сечениях /—1 и 2—2. Каждая частичка жидкости в элементарной струйке, имеющая массу т, обладает запасом удельной энергии Е. Полная удельная энергия складывается из удельной потенциальной fm, и удельной  [c.278]


В своем капитальном труде Н. С. Курнаков рассматривает измеримые физические свойства веществ, применяемые в физико-химическом анализе. Общее число таких свойств достигает 30. Среди них тепловые свойства — плавкость и растворимость, теплота образования, теплоемкость, теплопроводность электрические свойства — электрическое сопротивление, электродвижущая сила, термоэлектрическая сила, диэлектрическая проницаемость объемные свойства — удельный вес и удельный объем, объемное сжатие, коэффициент теплового расширения. При физико-химическом анализе измеряются также основные оптические свойства объектов исследования, свойства, основанные на молекулярном сцеплении (вязкость, твердость, давление истечения, поверхностное натяжение и др.)) магнитные свойства и многие другие. В физико-химическом анализе широко применяется изучение микроструктуры систем, позволяющее определить их фазовый состав. В последние десятилетия физико-химический анализ пополнился таким важным методом исследования, как рентгенография, который позволяет установить параметры и структуру кристаллографических решеток твердых фаз изучаемой системы  [c.159]

Символы с — удельная теплоемкость D = — диаметр g ускорение силы тяжести А i — разность между средней энтальпией потоку и энтальпией насыщенной жидкости L —длина р—давление д —плотность теплового потока кр—критическая плотность теплового потока г—скрытая теплота парообразования Т — температура Т" — температура насыщения над плоскостью — скорость циркуляции X — весовое паросодержание потока а — коэффициент теплообмена Р — объемное паросодержание потока у — удельный вес о — поперечный линейный размер канала —-недогрев ядра потока до температуры насыщения X — коэффициент теплопроводности v — коэффициент кинематической вязкости о—коэффициент поверхностного натяжения т — время.  [c.58]

В качестве объемных рассматривают силы веса, магнитные силы и т. д. Примером распределенной нагрузки является давление жидкости или газа на поверхность конструкционного элемента. Это давление направлено по нормали к поверхности и характеризуется интенсивностью, т, е. удельным давлением. Удельное давление имеет размерность силы, деленной на площадь, и измеряется в паскалях. Напомним, что 1 Па = = 1. Чаще используют более крупную единицу — мегапаскаль, 1 МПа = 10 Па. Применяется и внесистемная единица — техническая атмосфера, при этом 1 атм = 1 = = 0,0т МПа=0, МПа.  [c.15]

Определить силу активного давления на вертикальную грань подпорной стены (рис. 3.149). Объемный удельный вес грунта 7 = 16 кН/м , угол внутреннего трения грунта ф==40°, 5 гол трения грунта по стенке фо = 0. Поверхность засыпки горизонтальна. Расчетная длина стенки 1 м.  [c.361]

В, Р, 8—диаметр цилиндра, площадь и ход одного поршня п—число циклов СПГГ 1 е— мощности СПГГ по газу я эффективная 8г> ёт— расходы воздуха, газа и топлива за один рабочий цикл Ок,Ог,От—расходы воздуха, газа и топлива за единицу времени п Пп— вес и масса одной поршневой группы Р, L — сила давления газов на поршень и работа этой силы Ср , Ср —удельные теплоемкости воздуха и газа при постоянном давлении 7 — удельный вес Ар — средний перепад давлений к — показатель адиабаты —степень сжатия в двигателе т —степень повышения давления а, — коэффициенты избытка воздуха для горения и продувки 1г. т. %—индикаторный к. п. д. двигателя, механический к. п. д. СПГГ и эффективный к. п. д. установки г—к. п. д. турбины 1к> Чо— к. п. д. и объемный коэффициент наполнения компрессора д, к, б—индексы, обозначающие цилиндр двигателя, компрессора и буфера п.х.,о.х.—индексы, обозначающие прямой и обратный ход  [c.6]


В приведенных выше выражениях Т(Х , t) -искомое поле температур kjj Xj,t) — коэффициент теплопроводности в твердом теле p(X(,t), (Xj,t) — плотность материала и его удельная теплоемкость Q Xj,t) — интенсивность тепловьщеления q x ,t) — тепловой поток на поверхности тела, характеризуемой нормалью и h Xf,t) - Nu- в безразмерном виде) коэффициент теплоотдачи, определяемый для случая обтекания тела жидкостью с температурой T Xj,t) — температурой среды — выражениями (3.36), (3,37), Очевидно, что в общем случае уравнения теплопроводности (3.39) и теплопереноса (3,27) связаны и должны решаться совместно, делая тем самым задачу определения температурных полей в твердом теле трудноразрешимой. Дапее, Дх,-,г) - искомое поле перемещений в твердом теле G Xf,T, и,) к X(Xj,T,u/) - коэффициенты Ламэ e=Ujj - объемная деформация а(х,..Г) - коэффициент температурного расширения F(x-,t) — массовые силы Pj(x.,t) — внешние усилия, заданные на поверхности тела характеризуемой нормалью (например, давление теплоносителя в контуре, контактные уси-  [c.98]

Штамповка листового металла взрывом, штамповка с использованием магнитных сил и электрогидравлического эффекта происходит не только при больших скоростях, но и при больших удельных давлениях., Совокупность особенностей высокоскоростной штамповки обусловливает то, что современные труднодеформируемые в обычных условиях прочные сплавы (жаропрочные стали, упрочняемые титановые сплавы и др.), в указанных условиях штампуются удовлетворительно. Кроме листовой штамповки, высокоскоростное деформирование применяют для резки металл-ургических полуфабрикатов, объемной штамповки, клепки (взрывные заклепки), для упрочнения поверхностных слоев деталей и других операций.  [c.206]

Весомость жидкости. Весомость ясидкости характеризуется объемным весом (удельной силой тяжести) и плотностью, которые фактически обозначают одно и то же свойство жидкости — отношение веса (силы тяжести) или массы жидкости к единице объема. При практических расчетах приходится иметь дело главным образом с объемным весом, который зачастую называют весовой плотностью, причем выражают его обычно как отношение веса в килограммах к объему в кубических сантиметрах или кубических метрах. Первое выраясение в большинстве случаев предпочтительнее последнего, так как эта система единиц совпадает с распространенными единицами измерения давления кПсм -) и прочих основных параметров, выражаемых в системе единиц сантиметр—килограмм—секунда.  [c.12]

В последнее время в практику холодной объемной штамповки стало внедряться прессование жидкостью высокого давления, которое позволяет получать профили и детали сложной конфигурации из малопластичных материалов. При прессовании жйдкостью, вследствие уменьшения сил трения и более равномерного распределения напряжений, удельные усилия гораздо ниже, чем при обычном выдавливании, а потому инструмент более стоек. При изготовлении отдельных деталей могут также применяться радиальное (ротационное) обжатие, раскатка и обкатка роликами и шарами. В литературе приводятся различные способы холодной объемной штамповки, позволяющие снижать удельное усилие.  [c.304]

Использование предыдущего семейства изотерм для исследования упругого равновесия самой верхней твердой оболочки Земли. Механические свойства твердого материала, температурное поведение которого представлено на рис. 1.9, по-видимому, в какой-то мере сходны со свойствами прочной сцементированной горной породы, обладающей довольно большой температурой плавления (1327°С при а=0), умеренным температурным расширением и весьма высокой объемной упругостью. Чтобы использовать доставляемые рис. 1.9 сведения для описания упругого состояния горных пород, слагающих внешнюю оболочку Земли, примем в первом приближении, что плотность пород и ускорение силы тяжести постоянны в пределах первых 50 км глубины. Если предположить, что средняя плотность пород втрое превышает плотность воды, т. е. их удельный вес равен у = 0- 3 кг1см , то всестороннее давление, обусловленное весом вышележащих пород земной коры, достигнет величины Рс=15 000 кг см =уу как раз на глубине / = 50 км.  [c.36]

На фиг. 22,6 показаны зоны различных деформаций при осадке цилиндрической заготовки. Установлено, что деформируемый объем при этом имеет характерные зоны / — зоны затрудненной деформации благодаря влиянию сил внешнего трения II — зона наиболее интен--сивной деформации, расположенная к действующему усилию под углом 45° III — зоны средних по величине деформаций. В центре имеем схему объемного сжатия, а на боковых частях сжатие с растяжением. Этим объясняется неравномерное распределение давлений по контактным поверхностям. На краях образца удельное давленне равно пределу текучести деформируемого металла (фиг. 22,г), а к  [c.80]


Смотреть страницы где упоминается термин Удельная объемная сила давления : [c.12]    [c.183]    [c.269]    [c.45]    [c.69]   
Гидравлика Изд.3 (1975) -- [ c.36 , c.81 ]



ПОИСК



Сила давления

Силы объемные

Удельная объемная давления

Удельная объемная сила

Удельное давление



© 2025 Mash-xxl.info Реклама на сайте