Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрица плотности в статистической механике

Матрица плотности в статистической механике  [c.58]

Напомним, что матрица плотности в статистической механике удовлетворяет следующему дифференциальному уравнению  [c.79]

Вторичное квантование. В статистической механике приходится иметь дело с волновыми функциями, зависящими от огромного числа переменных, поэтому координатное представление неудобно для практического использования. Квантовые состояния многочастичных систем обычно описываются в представлении чисел заполнения которое также называется представлением вторичного квантования. Главным достоинством этого представления является то, что в нем симметрия Д/ -частичных волновых функций учитывается автоматически путем введения специальных операторов рождения и уничтожения. Действуя на квантовое состояние системы, эти операторы изменяют число частиц в одночастичных состояниях. Как мы увидим дальше, формализм, основанный на использовании операторов рождения и уничтожения, очень удобен для построения операторов динамических величин и приведенных ( -частичных) матриц плотности, которые играют исключительно важную роль в кинетической теории (см. главу 4). Мы обсудим основные идеи метода вторичного квантования, поскольку он будет часто использоваться в книге. Детальное изложение этого метода можно найти в любом современном учебнике по квантовой механике (см., например, [14, 79, 89, 125]).  [c.32]


Мы опять получили описание, в котором зависимость от времени полностью сосредоточена в операторе (матрице) плотности, а не в динамических операторах. Такое представление может быть названо шредингеровским для статистической механики.  [c.66]

Рассмотрим теперь основные понятия квантовой статистической механики — чистые и смешанные квантовые ансамбли, статистический оператор (или матрицу плотности) и квантовое уравнение Лиувилля. Обсудим также симметрию по отношению к обращению времени в квантовой статистике.  [c.22]

Изложенный формализм находит многочисленные применения в задачах квантовой механики и статистической физики [4, 31, 104]. В теории неравновесных процессов он дает возможность преобразовать квантовое уравнение Лиувилля или основные кинетические уравнения в дифференциальные уравнения для символов матриц плотности. Во многих случаях решать эти дифференциальные уравнения проще, чем иметь дело с исходными операторными уравнениями.  [c.149]

Интересным приложением неравновесной статистической механики является теория открытых систем, которая активно развивается в последние десятилетия (см., например, [78, 136]). Наиболее впечатляющим свойством открытых систем является самоорганизация , т. е. возникновение упорядоченных макроскопических структур. В главе 7 было выведено основное кинетическое уравнение для матрицы плотности открытой системы, взаимодействующей с термостатом. Однако, как правило, реальные открытые системы взаимодействует с окружением, которое само находится в неравновесном состоянии. Поэтому актуальной задачей является разработка метода построения статистических ансамблей, представляющих состояние открытой системы, взаимодействующей с другими неравновесными системами.  [c.281]

После того как написаны эти соотношения, можно переходить к задаче нахождения функции распределения для квантовомеханических переменных. Сначала заметим, что в соответствии с основными принципами квантовой теории классические наблюдаемые — такие, как д (i) — заменяются в квантовой механике операторами Ь. Как мы знаем, в квантовой механике можно по-разному выбирать временную зависимость операторов Ь. В представлении Шредингера операторы Ь, Ь+ не зависят от времени и вся временная зависимость квантовой системы описывается волновой функцией <р или (при более изящном подходе) зависящей от времени матрицей плотности. Другое описание основывается на представлении Гейзенберга, в котором зависят от времени операторы Ь, Ь+, а волновая функция от времени не зависит. В нашем изложении будет использоваться представление Шредингера, которым мы уже пользовались в разд. 11.1, хотя и не употребляли этот термин. Мы установим аналогию между структурой статистического среднего такого вида, как Б формуле (П.35), и квантовомеханического среднего вида  [c.297]


В заключение отметим, что имеются два типа средних значений. Первый возникает в рамках квантовой механики и следует из того, что квантовое состояние допускает только статистическое описание. Второй тип средних значений чисто классический. Он отражает тот факт, что у нас нет полной информации о системе, мы даже не знаем, в каком квантовом состоянии система находится. В результате возникает усреднённая матрица плотности р. В то время, как в первом случае можно описывать состояние системы вектором состояния, во втором следует обратиться к формализму матрицы плотности. Иногда векторы состояний называют чистыми состояниями, а усреднённые матрицы плотности описывают смешанные состояния В оставшейся части книги мы не будем делать различий между р и р, и станем писать р даже тогда, когда будем иметь дело со смешанными состояниями.  [c.69]

Таким образом, главная задача равновесной статистической механики — вычисление суммы по состояниям (1.4.1) (для систем с непрерывным спектром эта сумма превращается в интеграл, а для квантовомеханических систем — в сумму диагональных элементов матрицы плотности). Результат такого вычисления дает Z и F как функции Т и любых других переменных, входящих в E(s), например магнитного поля. Термодинамические характеристики можно получить затем посредством дифференцирования.  [c.17]

Каноническое распределение наиболее часто используется в реальных приложениях статистической механики. Это объясняется двумя причинами во-первых, каноническое распределение описывает систему при постоянной температуре, а это условие наиболее легко осуществить в физических экспериментах во-вто-рых, каноническое распределение наиболее удобно для математических преобразований. Ряд основных свойств канонического распределения уже обсуждался в предыдущей главе, но мы снова перечислим их здесь, дополняя некоторыми замечаниями, в особенности относящимися к асимптотической оценке распределения для больших систем. Эти замечания важны для ясного понимания связи между термодинамикой и статистической механикой. Подобные же методы могут быть применены к другим обобщенным каноническим распределениям. Для решения задач группы А этой главы необходимы знания в объеме Основных положений гл. 1 и простейших параграфов настоящей главы, не отмеченных звездочкой ( ) (в частности, такие более сложные вопросы, как преобразование Лапласа и матрицы плотности, не понадобятся).  [c.120]

НОСТЬ в этом смысле аналитического сигнала. Позже Пар-рент и Роман [11] установили формальную аналогию между когерентной матрицей поля и матрицей плотности в статистической квантовой механике. Они применили метод когерентных матриц к некоторым специфическим оптическим приборам, и в квазимопохроматическом случае вывели закон преобразования когерентной матрицы, сформулированный с использованием приборных операторов.  [c.199]

Работа состоит из шести глав. Первая глава посвящена разбору возможностей, предоставляемых классической механикой для решения названной основной задачи, и критике относящихся сюда работ, основанных на классической механике. Вторая глава посвящена аналогичному рассмотрению в квантовой механике. В третьей главе разбирается вопрос об описании немаксимально полных опытов, в частности об условиях применимости понятия статистического оператора матрицы плотности). В четвертой главе выводятся некоторые ограничения, которые накладываются на возможности измерений, производимых над макроскопическими системами, условием сохранения их заданной макроскопической характеристики. Значительная часть вопросов, затронутых в третьей и четвертой главах, заключается в получении свойств релаксации, Я-теоремы и т. д.— утверждений макроскопических, т. е., казалось бы, не связанных с вопросами о возможностях измерения. Поэтому, чтобы при решении поставленной в работе задачи не казалось странным возникновение этих вопросов, отметим сразу же, что самая суть поставленной задачи заключается в выяснении связи макроскопических утверждений с микромеханикой, а уравнениям последней можно, как известно, придать физический смысл лишь в связи с возможностями измерений. Пятая глава посвящена общим понятиям о релаксации физических систем, об j/У-теореме и о средних во времени значениях физических величин. В шестой главе выясняется связь между существованием релаксации и определенными свойствами гамильтониана системы.  [c.16]


МАТРИЦА ПЛОТНОСТИ (или статистический оператор) — оператор, с помоп ью к-рого можно вычислить среднее значение любой физ. величины в квантовой статистич. механике (и в частном случае в квантовой механике). Термин М. п. связан с тем, что статистич, оператор обычно задается в матричной форме и определяет плотность вероятности. М. п. была введена И. Нейманом (1927 г.) и Л, Д. Ландау (1930 г.).  [c.158]

СТАТИСТИЧЕСКИЙ ОПЕРАТОР (матрица плотности) — оператор, с помощью к-рого можно вычислить ср. значение любой фиа. величины в квантовой механике и квантовой статистич. физике. С. о. описывает состояние системы, не основанное на полном (в смысле квантовой механики) наборе данных о системе (смешанное состояние). Подробнее см. Матрица плотности.  [c.675]

Из квантовой механики известно, что при наблюдении поле никогда не находится в чистом квантовомеханпческом состоянии. Наиболее вероятное состояние поля описывается статистической смесью состояний и характеризуется матрицей плотности (статистическим оператором).  [c.246]

В то время как максимально полный опыт, заключающийся в определении собственных значений всех коммутирующих друг с другом эрмитовских операторов, описывается в квантовой механике Т-функцией, опыт немаксимально полный, по общепринятым сейчас представлениям, всегда может быть описан статистическим оператором (так называемым оператором Неймана [29] или матрицей плотности, см. 4 гл. II). Все квантовомеханические попытки интерпретации статистики исходят поэтому из описания статистических систем либо при помощи Т-функций, либо при помощи статистических операторов. В настоящей главе мы будем рассматривать возможности различных точек зрения, исходя сначала из максимально полного описания, потом — из статистических операторов. Мы переносим в главу III исследование вопроса о возможности описания немаксимально полных опытов при помощи статистических операторов, и следуем в этой главе общепринятым представлениям.  [c.136]

Следовательно, для вычисления средних значений квантовых операторов с помощью матрицы плотности смегаапного представления О (г, р) следует пользоваться обычными правилами классической статистической механики, усредняя вместо квантового оператора соответствующую ему классическую функцию и используя вместо классической функции распределения в фазовом пространстве координат и импульсов матрицу плотности смешанного представления.  [c.210]

Основной задачей квантовой статистической механики, как и классической, является проблема многих тел. По существу она сводится к разработке эффективных методов расчета равновесных и неравновесных характеристик системы, состоящей из чрезвычайно большого числа частиц. За последние годы наметился ряд новых перспективных подходов к этой проблеме, связанных с систематическим использованием аппарата теории квантованных полей. Среди них одним из наиболее эффективных является, по-видимому, метод временных температурных функций Грина, представляющий собой естественное развитие аппарата, разработанного первоначально в связи с задачами квантовой электродинамики и мезодинамики. Уже использование динамических функций Грина, определенных как средние по основному состоянию системы, оказалось весьма эффективным при решении некоторых задач статистической физики. Однако только обобщение на случай конечных температур, представляющее собой соединение идей квантовой теории поля и метода матрицы плотности, позволило выявить все возможности данного аппарата.  [c.7]

Изучение статистической механики требует от читателя активного овладения ее довольно абстрактными методами, особенно методом вторичного квантования, что служит серьезным препятствием для начинающего. В предлагаемьх лекциях Фейнмана изложению общей теории почти всегда предшествует подробное решение простых конкретных задач, что заметно облегчает усвоение теории. Например, проведенное в гл. 1 рассмотрение системы гармонических осцилляторов, равновесного теплового излучения, дебаевской теории кристаллической решетки позволяет более естественно подойти в гл. 6 к обсуждению формализма вторичного квантования. Изложение теории матрицы плотности иллюстрируется на простых задачах, в которых проводится явное построение матрицы плотности для простых систем. Эти примеры, с одной стороны, помогают читателю лучше освоиться со сложным понятием матрицы плотности, а с другой — оказываются полезными в гл. 3 при рассмотрении метода интегралов по траекториям в применении к задачам квантовой статистики. Подобная тесная связь между различными разделами характерна для всей книги. Большое внимание в лекциях уделено методу функционального интегрирования, который обычно  [c.5]

МАТРИЦА ПЛОТНОСТИ (статистический оператор), оператор, при помощи к-рого можно вычислить ср. значение любой физ. величины в квант, статистич. механике и, в частном случае, в квант, механике. Термин М. п. связан с тем, что статистич. оператор задаётся обычно в виде матрицы  [c.397]


Смотреть страницы где упоминается термин Матрица плотности в статистической механике : [c.71]   
Смотреть главы в:

Статистическая механика Курс лекций  -> Матрица плотности в статистической механике


Статистическая механика Курс лекций (1975) -- [ c.60 ]



ПОИСК



Матрица плотности

Статистическая механика



© 2025 Mash-xxl.info Реклама на сайте