Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диэлектрики, отличие от металлов

Диэлектрики, отличие от металлов 172, 226, 227, П 184  [c.408]

В отличие от металлов в полупроводниках и диэлектриках также возникает так называемый внутренний фотоэффект, состояш,ий в возбуждении электронов из валентной зоны в зону проводимости. Для внутреннего фотоэффекта энергия поглощенного светового кванта не должна быть меньше ширины запрещенной зоны (разность энергии между нижней границей зоны проводимости и верхней границей валентной зоны).  [c.345]


Молекулярные кристаллы имеют низкие температуры плавления и испарения, поскольку энергия связи невелика. Они — диэлектрики, так как построены из электрически нейтральных атомов (молекул), и в отличие от металлов прозрачны для электромагнитного излучения. Малая энергия связи определяет также низкий модуль упругости кристаллов и небольшие коэффициенты теплового расширения. Механические характеристики их низки.  [c.17]

Диэлектрики и полупроводники качественно подобны и те и другие имеют энергетическую щель в спектре электронных состояний. Однако в полупроводниках эта щель (запрещенная зона) гораздо меньше. Поэтому проводимость полупроводников заключена в широком интервале, разделяющем проводимость металлов и диэлектриков. Например, для кремния при 300 К а=5-10 См/м, а для германия а=2,5 См/м, что в 10 —10 раз превышает проводимость диэлектриков и в то же время в 10 —10 раз уступает проводимости металлов. Зависимость о Т) полупроводников лишь в исключительных случаях и в небольшом температурном интервале может носить металлический характер как правило, и в полупроводниках, и в диэлектриках температурные зависимости проводимости подобны. Ширина энергетической щели в германии равна 0,72 эВ, а в кремнии 1,12 эВ, в то время как в алмазе — диэлектрике е такой же кристаллической структурой — запрещенная зона равна 7 эВ. Таким образом, с точки зрения зонной теории полупроводники принципиально отличаются от металлов наличием энергетической щели, в то время ак между полупроводниками и диэлектриками есть только количественное отличие. Считается, что при Д < 2—3 эВ кристалл можно отнести к полупроводникам, а при больших — к диэлектрикам.  [c.16]

Полупроводники по удельному сопротивлению, которое при комнатной температуре составляет 10 — 10 Ом -м, занимают промежуточное положение между металлами и диэлектриками. Они обладают совокупностью специфических свойств, которые и выделяют их среди других веществ. В отличие от металлов полупроводники имеют в большом интервале температур отрицательный температурный коэффициент удельного сопротивления ТКр, т. е. положительный температурный коэффициент удельной проводимости ТКу (рис. И.1).  [c.47]

Ом-м и занимают промежуточное положение между диэлектриками и проводниками. Температурный коэффициент сопротивления диэлектриков и полупроводников в отличие от металлов отрицателен. Различия между проводниками, и полупроводниками и диэлектриками объясняются с помощью зонной теории.  [c.308]


Полупроводники. К полупроводникам относится широкий круг конструкционных материалов, электрическая проводимость которых ограничивается интервалом от 10 ° до 10 Ом см т. е. меньше, чем у металлов и больше, чем у диэлектриков. Б отличие от металлов и диэлектриков для полупроводников характер-  [c.183]

Г. Газы, в отличие от металлов и электролитов, состоят из электрически нейтральных атомов и молекул и в нормальных условиях не содержат свободных носителей тока (электронов и ионов). Газы в нормальных условиях являются диэлектриками. Носители электрического тока в газах могут возникнуть только при ионизации газов — отрыве от их атомов или молекул электронов. При этом атомы (молекулы) газов превращаются в положительные ионы. Отрицательные ионы в газах могут возникнуть, если атомы (молекулы) присоединят к себе электроны.  [c.231]

Полупроводники качественно отличаются от металлов природой химических связей, структурой и физико-механическими свойствами. От диэлектриков полупроводники отличаются лишь количественно. Полупроводники — это вещества, имеющие при нормальной температуре удельную проводимость в интервале 10" —10 Ом" м , которая зависит от вида и количества примесей, структуры вещества и внешних условий температуры, давления, электрических и магнитных полей, освещения, облучения ядерными частицами. В соответствии с зонной теорией у металлов валентные электроны легко переходят на уровни зоны проводимости и все валентные электроны участвуют в создании тока. У полупроводника энергетическая зона валентных электронов занята полностью и отделена от зоны проводимости зоной запрещенных энергий. К полупроводникам относятся вещества, для которых запрещенная зона равна (0,16- -5,1) 10" Дж. Вещества с большей шириной запрещенной зоны относятся к диэлектрикам. Основу полупроводникового прибора составляет кристалл полупроводникового материала с одним пли несколькими электронно-дырочными р—м-переходами, которые получают,, вводя разнообразные примеси в различные участки одного и того же кристалла.  [c.230]

Связь между оптическими и электрическими характеристиками металла. Металлы отличаются от диэлектриков наличием в них электронов проводимости (свободных электронов), плотность которых весьма велика (порядка Ю - в 1 см"). Поэтому при рассмотрении прохождения света через металлы и отражения от них должна быть учтена проводимость металла. Такой учет приводит к введению в уравнение Максвелла членов, зависящих от электропроводимости металла а. Тогда имеем  [c.60]

В отличие от диэлектриков, где длина свободного пробега фононов при низких температурах, в основном, определяется размерами образца, Б металлах длина свободного пробега электронов при этих температурах определяется дефектами и примесями. Это связано с тем, что энергия электронов (вблизи энергии Ферми), переносящих теплоту, слабо зависит от температуры [формула (6.57)]. Длина волны де Бройля Х=И/(mv ) таких электронов — порядка средних межатомных расстояний, поэтому электроны сильно рассеиваются на дефектах атомных размеров и средняя длина свободного пробега <Хэл> ограничена этими размерами.  [c.196]

В отличие от диэлектриков и полупроводников в металлах валентная зона заполнена электронами либо частично, либо целиком, но при этом перекрывается со следующей разрешенной зоной. Заполненные состояния от незаполненных отделяются уровнем Ферми. Таким образом, уровень Ферми в металлах расположен в разрешенной зоне.  [c.255]

Поляризационные потери в диэлектрике увеличиваются с частотой, что используется для понижения напряжения на рабочем конденсаторе. Поэтому для нагрева диэлектриков используются высокие частоты, не ниже нескольких сотен тысяч герц, а часто и диапазон СВЧ. Это второе отличие от индукционного нагрева металлов, где используются частоты от нескольких герц до частот радиотехнического диапазона в зависимости от свойств нагреваемого материала, формы и размеров нагреваемых объектов, технологии.  [c.12]

В отличие от индукционного нагрева металлов при нагреве диэлектриков поверхностный эффект является вредным, так как приводит к неравномерному распределению температуры, которая не может выровняться из-за низкой теплопроводности диэлектриков. Во избежание заметных проявлений поверхностного эффекта надо выбирать частоту поля такой, чтобы глубина проникновения в 3—4 раза превосходила размеры нагреваемого тела.  [c.142]


Диэлектрики в отличие от полупроводников имеют более широкую запрещенную зону (до 7—10 эВ). Поэтому при обычных температурах они обладают очень низкой концентрацией свободных носителей заряда, обусловливающей чрезвычайно малую их электропроводность. Это позволяет использовать диэлектрические пленки в качестве изолирующих прокладок между металлами или металлами и полупроводниками в тонкопленочных и интегральных схемах.  [c.271]

Приближенная количественная оценка показывает, что в диэлектрике с шириной запрещенной зоны 3 эВ концентрация свободных носителей заряда при комнатной температуре должна составлять j 2 10 м . При подвижности носителей Ыр 10 м /(В с) (100 см /(В с)) удельная электропроводность такого диэлектрика должна быть порядка 7 10 Ом х X м" (7-10 Oм см ). В действительности столь низкая электропроводность в диэлектриках не наблюдается из-за наличия в них примесей и дефектов, создающих энергетические уровни в запрещенной зоне. Концентрация свободных носителей заряда в таких диэлектриках определяется фактически количеством и характером расположения донорных и акцепторных уровней в запрещенной зоне. У контакта же с металлом концентрация свободных носителей может существенно отличаться от концентрации в толще диэлектрика вследствие образования здесь слоев обогащения или обеднения. С подобным явлением мы уже встречались в гл. 8 при рассмотрении контакта металл — полупроводник.  [c.272]

В отличие от диэлектриков все металлы характеризуются наличием свободных электронов проводимости. Под действием падающего на металл излучения в металле индуцируются вынужденные колебания свободных электронов, которые создают сильную отраженную волну, исходящую от поверхности металла в окружающее пространство.  [c.59]

В отличие от диэлектриков уравнение волны в металле описывается формулой (2-18) или (2-19). Сравнивая формулу (2-18) для металла с формулой (2-23) для диэлектриков, замечаем, что они различаются лишь тем, что в формулу (2-18) входит комплексный показатель преломления /и, а в формулу (2-23) — показатель преломления п.  [c.59]

Определения отражательной и поглощательной способностей, а также степени черноты уже были приведены выше. Согласно результатам по распространению плоских волн, полученным с помощью электромагнитной теории, отметим, что проникновение падающего излучения в вещество в сильной степени зависит от поглощательных характеристик материала. В металлах тепловое излучение, падающее на поверхность, проходит не более нескольких сот ангстрем до полного поглощения, поскольку металлы являются сильными поглотителями. Поэтому состояние поверхности металлов сильно влияет на отражательную способность материала и его степень черноты. Радиационные свойства диэлектриков менее чувствительны к состоянию поверхности [58]. Реальные поверхности отличаются от идеальных шероховатостью, окислением и загрязнением. Поэтому для металлов наиболее важно описывать состояние поверхности, когда представ-, ляются экспериментальные данные о степени черноты, отражательной и поглощательной способностях. К сожалению, все еще  [c.116]

Электроискровая обработка металлов основана на разрушении их действием импульсного электрического разряда, возникаюш,его при прохождении электрического тока через диэлектрик. Нарушение электрической прочности диэлектрика проходящим через него током называют пробоем, а разрушение поверхности электродов, между которыми возникает разряд, называют электроэрозией. В отличие от дугового электрического разряда, сопровождающегося интенсивными термическими воздействиями на металл электрода (дуговая сварка), при искровом разряде термические воздействия ограничены микроучастками поверхности и площадь поражения анода (обрабатываемой заготовки) находится в пределах 0,05—1 мм при глубине поражения 0,005—0,3 мм. При этих условиях исключается общее прогревание обрабатываемой заготовки.  [c.199]

Удельное сопротивление серебра равно 1,62 X X 10" Ом-м, меди 1,72-10" Ом-м. Удельное сопротивление обычных металлов в любом случае менее 10 Ом-м имеет положительный температурный коэффициент, равный около 4-10-3 °С" . В сравнении с ними диэлектрики в большинстве своем характеризуются удельным сопротивлением 10 —Ю Ом-м. Удельное сопротивление проводников более чем на 15 порядков отличается от удельного сопротивления диэлектриков. Полупроводники имеют удельное сопротивление  [c.308]

Тонкие слои металла, полученные вакуумной или химической металлизацией, часто используют в качестве электропроводного слоя, на который затем гальваническим способом наносят толстый слой металла. Современная гальванотехника обладает широким выбором различных металлопокрытий, налаженной технологией и готовыми наборами относительно дешевого оборудования. Поэтому металлизацию пластмасс стараются свести к гальваническому способу, создавая различным путем электропроводную поверхность пластмассовых изделий. Способов получения неметаллических электропроводных слоев известно довольно много нанесение электропроводных лаков, осаждение электропроводных слоев фосфидов, халькогенидов, оксидов физическими и химическими методами или образование электропроводной поверхности прямо в электролите осажденного металла путем электрохимического восстановления оксидов цинка, кадмия, индия и других металлов в приповерхностном слое пластмасс. Применяемые методы образования электропроводных слоев должны обеспечивать прочную связь металла с пластмассой, чем они в принципе отличаются от методов образования (сообщения) поверхностной электропроводности на диэлектриках, используемых в гальванопластике.  [c.5]

Лазерный отжиг - процесс восстановления кристаллической структуры твердого тела, нарушенной радиационным воздействием. В отличие от обычного, он позволяет контролировать температуру и время нагрева поверхностных слоев различных материалов на заданную глубину. Лазерный отжиг применяется для полупроводников, диэлектриков, металлов и сплавов. Его особенность состоит в том, что, во-первых, ввиду малой глубины проникновения лазерного излучения (10 +10" см) не происходит нарушений более глубоких слоев во-вторых, время действия лазерного излучения при импульсном облучении может быть чрезвычайно малым (нано- и пикосекундный диапазон).  [c.523]


Если, однако, обратиться к ковалентным кристаллам и металлам, то оказывается, что построить для них даже грубую теорию очень трудно. Основная проблема состоит в том, что расположение валентных электронов как в хорошо локализованных связях чисто ковалентных диэлектриков, так и в электронном газе щелочных металлов резко отличается от их расположения в изолированных атомах или ионах. В этих случаях наше рассмотрение будет носить лишь качественный характер.  [c.28]

Твердые тела, которые являются диэлектриками при Т = О, но имеют такие энергетические щели, что тепловое возбуждение при температурах ниже точки плавления может обусловливать заметную проводимость, называются полупроводниками. Ясно, что не существует четкого различия между полупроводником и диэлектриком грубо говоря, в наиболее важных полупроводниках энергетическая щель обычно меньше 2 эВ, а часто составляет лишь несколько десятых электронвольта. Типичные удельные сопротивления полупроводников при комнатной температуре лежат в интервале между 10 и 10 Ом-см (в отличие как от металлов, где р 10 Ом-см, так и от хороших диэлектриков, у которых р может достигать 10 Ом-см).  [c.185]

Зонная структура твердого тела является результатом взаимодействия волновой функции электрона с рещеткой. Зонная структура позволяет найти частоты и направления, для которых волновая функция электрона может или не может проходить через решетку. Отражение электронной волны под углами Брэгга от кристаллографических плоскостей является идеально упругим и не вносит вклада в электрическое сопротивление. Для каждого кристалла и каждой электронной конфигурации условия Брэгга налагают определенные ограничения на направление волнового вектора и значения энергий, которые может принимать электронная волна. Эти ограничения в направлениях и значениях энергий приводят к появлению щелей в почти непрерывном спектре энергий и направлений. Именно эти щели (порядка 1 эВ для полупроводников и 5 эВ или больше для хороших диэлектриков) обусловливают сильнейшие различия между металлами, полупроводниками и диэлектриками (рис. 5.2). Для металлов характерно, что уровень Ферми оказывается внутри зоны, имеющей вакантные энергетические уровни. Полупроводники имеют полностью заполненную разрешенную зону. Ширина запрещенной зоны у них невелика, н поэтому ие большое число электронов при тепловом возбуждении может перейти в расположенную выше разрешенную зону. Диэлектрик отличается от полупроводника тем, что его запрещенная зона очень велика, и практически ни один возбужденный электрон не может ее преодолеть.  [c.190]

В металлах перенос теплоты осуществляется главным образом вследствие диффузии свободных электронов. Доля упругих колебании крпсталлнческо решетки в общем процессе переноса теплоты незначительна из-за огромной иодвижности электронов ( электронного газа ). По этой же причине теплопроводность металлов значительно выше диэлектриков и других веществ. При повышении температуры колебание кристаллической решетки не только способствует переносу энергии, но в то же время создает помехи движению электронного газа , что сказывается на электро-и теплопроводности металлов. Теплопроводность чистых металлов (кроме алюминия) с повышением температуры уменьшается, особенно резко теплопроводность снижается при наличии примесей, что объясняется увеличением структурных неоднородностей, которые препятствуют направленному движению электронов и приводят к их рассеиванию. В отличие от металлов теплопроводность сплавов с возрастанием температуры увеличивается.  [c.64]

В отличие от металлов, в диэлектриках электропроводность может быть трех видов электронная, ионная, молионная.  [c.17]

К), проме-луточными между уд, электропроводностью металлов и хороших диэлектриков. В отличие от металлов, концентрация подвижных носителей заряда в П, м. значительно ниже концентрации атомов, а электропроводность а возрастает с ростом Т. Для П. м. характерна высокая чувствительность эл.-фи8. свойств к внеш. воздействиям (нагрев, облучение, деформация и т. д,), а также к содержанию примесей и структурных дефектов. Характеристики важнейших П. м. приведены в табл. 1.  [c.44]

В полупроводниках и диэлектриках порог Ф. э. /1СОо= д+Х, где а— ширина запрещённой зоны, % — сродство к электрону, представляет собой высоту потенц. барьера для электронов проводимости (рис. 1, б). В не сильно легированных ПП эл-нов проводимости мало, поэтому здесь, в отличие от металлов, рассеяние энергии фотоэлектронов на эл-нах проводимости роли не играет. В этих материалах фотоэлектрон теряет энергию при вз-ствии с эл-нами валентной зоны (ударная ионизация) или с тепловыми колебаниями кристаллической решётки (рождение фононов). Скорость рассеяния энергии и глубина.  [c.830]

В результате такого влияния оптич. и электрич. свойства металлов взаимосвязаны чем больше статич, проводимость металла, тем сильнее он отражает свет. Отклонения возникают при низких темп-рах и на высоких частотах (видимая область спектра), когда важную роль играют квантовые эффекты, связанные с электронным рассеянием, мешзоыными переходами и др. В УФ- и более КВ-диапаэонах с излучением взаимодействуют электроны внугр. оболочек атомов, и, напр., в рентг. области спектра металлы уже не отличаются от диэлектриков по оптич. свойствам.  [c.110]

Релаксационные и динамические явления. Намагничивание парамагнетика в поле Н происходит в результате процессов продольной и поперечной магн. релаксации. Первая устанавливает равновесное значение проекции М на направление Н, вторая ведёт к затуханию нестационарной ортогональной компоненты намагниченности. Продольная релаксация обусловлена взаимодействием микроскопич. магн. моментов с тепловым движением среды. Время продольной релаксации Т] обычно составляет 10 —Ю с при 300 К и растёт с понижением темн-ры. Время поперечной релаксации Тз в парамагн. металлах и жидкостях мало отличается от Т2, однако в твёрдых диэлектриках, как правило, Т). В последнем случае поперечная релаксация обусловлена взаимодействиями в системе микроскопич. магн. моментов и ведёт к установлению в ней внутр. квазиравновесия, характериэуелюго, в общем, двумя спиновыми температурами. Одна из них служит мерой упорядоченности моментов р. во внеш. поле Н. а другая — мерой их взаимной упорядоченности (ближнего порядка).  [c.533]

ПОЛУПРОВОДНИКЙ — широкий класс веществ, в к-рых концентрация подвижных носителей заряда значительно ниже, чем концентрация атомов, в может изменяться под влиянием теми-ры, освещения иля относительно малого кол-ва примесей. Эти свойства, а также увеличение проводимости с ростом темп-ры, качественно отличают П. от металлов. Различие между П. и диэлектриками носит условный характер, к диэлектрикам обычно относят вещества, уд. сопротивление р к-рых при комнатной темп-ре (7" = 300 К) >104—10 Ом-см.  [c.35]

Необходимо отметить, что в некоторых диэлектриках устойчивость непроводящего состояния может быть нарушена и в слабых электрических полях без сильного разогрева или облучения [26]. Небольшое изменение внешних условий — давления, температуры, магнитного или электрического поля — приводит к скачкообразному (в 10 —10 2 раз возрастанию электронной проводимости, т. е. изолятор превращается в проводник. Очевидно, что вместе с изменением структуры электроны освобождаются от поляризационной связи и, как в обычном проводнике, экранируют электрическое поле. Такие фазовые переходы экспериментально наблюдаются в оксидах переходных металлов, низкоразмерных проводниках (см. 4.4) и в суперионных проводниках. В отличие от пробоя эти переходы в проводящее состояние обратимы. Резкое и обратимое повышение проводимости в сильных полях наблюдается и при инжекционных процессах в связи с током, ограниченным пространственным зарядом (см. 2.2). При этом нарушение устойчивой проводимости в отличие от пробоя также является обратимым.  [c.43]


Магнитная восприимчивость кристаллов типа TTF—T NQ мала и во всем интервале температуры становится диамагнитной (см. рис. 4.13,а), что существенно отличается от рассмотренных выше ЗМ.-размерных кристаллов типа V2O3, в которых также происходит ФП типа металл—диэлектрик, но с антиферро-магнитным упорядочением. Следовательно, в данном случае переход не может быть переходом -моттовского типа, поскольку низкоте.мпературная фаза соответствует диэлектрику с полностью заполненной валентной зоной [3, 5].  [c.120]

Полевые транзисторы в отличие от биполярных имеют большее входное сопротивление, обладают значительно большей стабильностью при изменении температуры, создают меньшего уровня шум, обладают более высокой стойкостью к действию ионизирующего излучения. Разновидностью полевых транзисторов являются транзисторы с изолированным затвором, или МДП-транзисторы (металл — диэлектрик — полупроводник) или МОП-транзисторы (металл — оксид — полупроводник). Различают МДП-транзисторы с собственным каналом, характеристики которого представлены на рис. 3.23, и МДП-транзисторы с индуцированным каналом, характеристики которого даны на рис. 3.24. Параметры МДП-транзисторов аналогичны параметрам полевых транзисторов, транзисхоры имеют те же преимущества, что и биполярные. По сравнению с полевыми транзисторами МДП-транзисторы имеют большее входное сопротивление, достигающее 10 ...10 Ом, и меньшую входную ёмкость, что позволяет их использовать на частотах до сотен мегагерц.  [c.472]

Серебро — благородный металл, стойкий против окисления при нормальной температуре. Серебро отличается от других металлов наименьшими значениями удельного электрического и теплового сопротивлений (см. табл. 44). Временное сопротивление растяжению для серебряной проволоки составляет около 30 кПсм . Такую проволоку используют для изготовления контактов, рассчитанных на небольшую силу тока. Серебро применяют также для непосредственного нанесения на диэлектрики, в качестве обкладок, в производстве керамических и слюдяных конденсаторов. Для этой цели используют метод вжигания или испарения в вакууме.  [c.291]

Такими свойствами металлы обладают при сравнительно низких частотах излучения (радиодианазон, инфракрасная и видимая области). Го мере увеличения частоты все б(5льшую роль начинают играть квантовые эффекты, в первую очередь внутр. фотоэффект, и металлы (обычно, начиная с ультрафиолетовой области) по своим свойствам приближаются к диэлектрикам (плохое отражение, области прозрачности, наличие угла Брюстера и т. д.). Нанр., отражательная способность серебра, достигающая в видимой области более 95%, падает до 4,2% в ультрафиолетовой (отражение стекла). При еще больших частотах (рентгеновская область) оптич. свойства определяются внутренними , более сильно связанными с атомами электронами, и металлы не отличаются от диэлектриков.  [c.192]


Смотреть страницы где упоминается термин Диэлектрики, отличие от металлов : [c.395]    [c.273]    [c.68]    [c.28]    [c.94]    [c.7]    [c.8]    [c.5]    [c.121]    [c.366]    [c.82]    [c.420]    [c.401]   
Физика твердого тела Т.2 (0) -- [ c.72 , c.184 , c.226 , c.227 ]

Физика твердого тела Т.1 (0) -- [ c.72 , c.184 , c.226 , c.227 ]



ПОИСК



Диэлектрик



© 2025 Mash-xxl.info Реклама на сайте