Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оксиды переходные

Одно из важных свойств стекол - прозрачность в диапазоне длин волн видимого света. Добавление оксидов переходных металлов в состав стекломассы окрашивает стекла и даже делает их непрозрачными. Показатель преломления стекол можно изменять подходящими добавками.  [c.14]

Рассмотрены закономерности дисперсионного упрочнения ниобия, ванадия, тантала, хрома, молибдена, вольфрама и сплавов на их основе тугоплавкими карбидами, нитридами, оксидами переходных металлов четвертой группы.  [c.2]


Рис. 45. Температуры плавления боридов, карбидов, нитридов и оксидов переходных металлов Рис. 45. <a href="/info/32063">Температуры плавления</a> боридов, карбидов, нитридов и оксидов переходных металлов
Восстановлению оксидов азота благоприятствуют термодинамические факторы. Например, они способствуют разложению N0 на N2 и Ог, хотя эта реакция протекает чрезвычайно медленно. Следовательно, для ее осуществления необходим катализатор. Наиболее эффективными катализаторами этой реакции являются оксиды переходных и благородных металлов, т. е. вещества тех же самых типов, которые катализируют окисление СО и углеводородов. Однако катализаторы, эффективно действующие в одной реакции, обычно оказываются гораздо менее активными в другой. Поэтому приходится подбирать каталитическую систему, состоящую из двух различных компонентов.  [c.279]

Другим источником снижения температуры плавления является получение оксидных смесей с широкой областью не-стехиометрии оксидов переходных металлов.  [c.69]

С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]


Большая группа ферримагнитных оксидов обладает гексагональной кристаллической структурой. На рис. 29.31 приведена диаграмма, на которой указаны химические составы таких веществ. В углах расположены соединения ВаО, МеО и РегОз, Символ Me означает двухвалентный ион первой переходной группы или ионы Zn + и Mg +, а также комбинацию этих ионов  [c.726]

С целью выяснения природы проводимости и механизма начальных стадий образования оксида в настоящей работе исследовали переходные явления, возникающие при вольт-статическом оксидировании алюминия в растворе кремнекислого натрия.  [c.75]

Полученные результаты дают основание полагать, что кинетика переходного процесса оксидирования алюминия в растворе силиката натрия контролируется барьером Шоттки, который может существовать как на границе электролит—пленка, так и на границе металл— оксид.  [c.77]

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]

Возможные переходные оксиды Устойчивый оксид  [c.21]

Методами Э. были определены мн. атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в т. ч. мн. цепных и циклич. углеводородов, в к-рых впервые были локализованы атомы водорода, нитридов переходных металлов (Fe. Сг, Ni. W), обширного класса оксидов Nb. V, Та с локализацией атомов N и О, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи Э. исследуют и структуру дефектных кристаллов. В комплексе с электронной микроскопией Э. позволяет изучать фазовый состав и степень совершенства структуры тонких кристаллич. плёнок, используемых в разл. областях совр. техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок.  [c.585]

Магнитный аппарат монтируется к трубопроводам в вертикальном или горизонтальном положении с помощью переходных муфт. Скорость движения воды в зазоре не должна превышать 1 м/с. Процесс работы аппаратов может сопровождаться загрязнением проходного зазора механическими главным образом ферромагнитными примесями. Поэтому аппараты с постоянными магнитами необходимо периодически разбирать и чистить. Оксиды железа из аппаратов с электромагнитными удаляют, отключив их от сети.  [c.496]

При диффузионной сварке с использованием титана в качестве активного металла, так же как и при многоступенчатой технологии, образуется переходный слой между титаном и керамикой. Образование этого плотного и прочного слоя обусловлено тем, что титан окисляется до оксида, который вступает во взаимодействие с оксидами, находящимися в керамике. В результате возникает многокомпонентная стекловидная фаза, которая и представляет собой переходный слой.  [c.90]

И ВО, но оксид ВО более устойчив (при рассмотрении суперсплавов символом А обычно обозначают Ni или Со, а символом В - Сг, А1, Ti и другие элементы). При низких концентрациях В будет образовываться поверхностный слой АО, а оксиды ВО, образующиеся путем внутреннего окисления, выделяются во внутренних объемах сплава (рис. 11.3,а). Если концентрация В повышается и превосходит критический уровень перехода к наружному окислению, формируется строение, представленное на рис. 11.3,5. Создание сплошного слоя ВО кладет конец продолжению формирования оксида АО, если последний менее устойчив, чем ВО, хотя до создания совершенного слоя ВО образуется некоторое количество соединения АО (стадия "переходного окисления"). Строение, представленное на рис. 11.3,5, и является целью легирования, направленного на повышение противоокислительной стойкости. Иными словами, легирующий элемент В, оксид которого очень стабилен и медленно растет, вводят в количестве, достаточно большом для формирования поверхностного защитного слоя посредством "избирательного окисления" [6].  [c.12]


Необходимо отметить, что в некоторых диэлектриках устойчивость непроводящего состояния может быть нарушена и в слабых электрических полях без сильного разогрева или облучения [26]. Небольшое изменение внешних условий — давления, температуры, магнитного или электрического поля — приводит к скачкообразному (в 10 —10 2 раз возрастанию электронной проводимости, т. е. изолятор превращается в проводник. Очевидно, что вместе с изменением структуры электроны освобождаются от поляризационной связи и, как в обычном проводнике, экранируют электрическое поле. Такие фазовые переходы экспериментально наблюдаются в оксидах переходных металлов, низкоразмерных проводниках (см. 4.4) и в суперионных проводниках. В отличие от пробоя эти переходы в проводящее состояние обратимы. Резкое и обратимое повышение проводимости в сильных полях наблюдается и при инжекционных процессах в связи с током, ограниченным пространственным зарядом (см. 2.2). При этом нарушение устойчивой проводимости в отличие от пробоя также является обратимым.  [c.43]

Важно отметить, что рассматриваемый ФП характеризуется не только скачком проводимости вблизи 7 к, но и изменением магнитных свойств кристалла (см. рис. 4.12,6). Диэлектрическая фаза является антнферромагнитной, а металлическая— парамагнитной. Подобные ФП со скачком проводимости и изменением магнитной упорядоченности наблюдались во многих оксидах переходных металлов в Ре Оз рост проводимости в 10 раз обнаружен при 120 К, в WO3 при 240 К —в 10 раз в VO2 при 340 К — в 10 раз, а в ЕиО при 50 К — в 10 раз.  [c.116]

Общая теория ФП типа диэлектрик — металл не разработана сложность заключается не только в решении многоэлектронной задачи, но н в большом разнообразии кристаллических структур н химических составов, где эти переходы имеют место (кроме оксидов переходных металлов близкие по характеру фазовые превращения обнаружены во многих халькогенидах). Поэтому ограничимся перечислением трех основных теоретических моделей, объясняющих разные стороны этого сложного физического явления.  [c.116]

Для окрашивания стекла в его состав вводят небольшие количества оксидов переходных элементов СоО (синий цвет), NiO (красный, зеленый), СГ2О3 (зеленый), СиО (голубой), СеОз (желто-коричневый),. MnOs (фиолетовый) и т. д.  [c.190]

При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии d-уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены d-уровни.  [c.98]

Взаимодействие кислорода с чистой поверхностью металла протекает в три этапа I) адсорбция кислорода, 2) иуклеация, т. е. образование зародышей, 3) рост сплошной оксидной пленки. На первых стадиях адсорбции пленка состоит из атомов кислорода, так как свободная энергия адсорбции атомов кислорода превышает свободную энергию диссоциации его молекул. Методом дифракции медленных электронов удалось установить, что атомы некоторых металлов входят в состав адсорбционной пленки и образуют относительно стабильную двухмерную структуру из ионов кислорода (отрицательно заряженных) и металла (положительно заряженных). Как уже говорилось в отношении пассивирующей пленки (разд. 5.5), адсорбционная пленка, составляющая доли монослоя, термодинамически более стабильна, чем оксид металла. На никеле, например, она сохраняется вплоть до точки плавления никеля [1 ], тогда как NiO разрушается вследствие растворения кислорода в металле . Дальнейшая выдержка при низком давлении кислорода ведет к адсорбции на металле молекул Оа, проникающих сквозь первичный адсорбционный слой. Так как второй слой кислорода связан менее прочно, чем первый, он адсорбируется не диссоциируя. Возникающая в результате структура более стабильна на переходных, чем на непереходных металлах [2]. Любые дополнительные слои адсорбированного кислорода связаны еще слабее, и наружные слои становятся подвижными при повышенных температурах, о чем свидетельствуют рентгенограммы, отвечающие аморфной структуре. Вероятно, ионы металла входят в многослойную адсорбционную пленку в нестехиометрических количествах и к тому же относительно подвижны. Например, обнаружено, что скорость поверхностной диффузии атомов серебра и меди выше в присутствии адсорбированного кислорода, чем в его отсутствие [3].  [c.189]

При этом большую роль, но всей вероятности, играет образование систем FeO—FeS, FeS—S и FeS—Fe, которые являются переходными в окислении суль фидов и имеют температуры плавления ниже 1000 °С. При попадании сульфида железа на поверхность экранных труб в ходе его окисления образуется одна из. форм оксидов железа. Очевидно, что при использовании газовой сушки топлива концентрация кислорода и температура в топочной камере ниже, чем при воздушной сушке. Поэтому во втором случае в топочном пространстве имеются более благоприятные условия для окисления сульфидной серы и уменьшается потенциальная возможность ее попадания на поверхность.  [c.39]

Данное сообщение относится к серии работ [1—3], посвященных изучению высокотемпературных превращений в органосиликатных модельных композициях с продуктом предварительной термообработки хризотилового асбеста (ППТХА 700 °С, 5 ч) как силикатной составляющей материала в исходном состоянии. Выбор диоксидов титана, циркония и гафния в качестве оксидных компонентов сделан, исходя из двух соображений. С одной стороны, первые два применяются при изготовлении промышленных и опытных марок органосиликатных материалов (OGM), а вся триада образована переходными металлами, входящими в побочную подгруппу IV группы Периодической системы элементов. С другой стороны, гафний непосредственно следует за лантаноидами, и поэтому сопоставительное исследование композиций, содержащих НЮа и оксиды редких земель, может представить интерес для выяснения влияния заполнения 4/-орбитапей на свойства OGM.  [c.206]


Рис. 7. Микроструктура переходного оксида на сплаве N1—ЮСг—1А1 после окисления в течение 20 ч при 1000 0 и давлении кислорода 10 Па. Образуются переходные термодинамически возможные оксиды N10, СгзОз и А12О3 [71] Рис. 7. Микроструктура переходного оксида на сплаве N1—ЮСг—1А1 после окисления в течение 20 ч при 1000 0 и давлении кислорода 10 Па. Образуются переходные термодинамически возможные оксиды N10, СгзОз и А12О3 [71]
Наличие не связанных в соли и оксиды металлов наряду с полной проводимостью приводит так же к сложной проводимости шлама и созданию нужного переходного сопротивления между протектором и грунтом, которое в свою очередь стабилизирует переходное сопротивление "протектор-грунт" в процессе анодного растворения протектора и повышает срок его службы, токоотдачу, а следовательно и эффективность работы протектор.  [c.80]

Высокодисперсные осадки серебра и меди на стекле были получены испарением металлов в инертной атмосфере при давлении 0,01—0,13 Па [33]. Этим же методом получены кластеры Li , содержащие от 15 и менее атомов лития [34]. Нанокристал-лические порошки оксидов Al Oj, ZrOj, YjO, получали испарением оксидных мишеней в атмосфере гелия [35], магнетронным распылением циркония в смеси аргона и кислорода [36], контролируемым окислением нанокристаллов иттрия [37]. Для получения высокодисперсных порошков нитридов переходных металлов использовали электронно-лучевой нагрев мишеней из соответствующих металлов, испарение проводили в атмосфере азота или аммиака при давлении 130 Па [38].  [c.20]

Бориды переходных металлов можно получать пиролизом борогидридов при 600—700 К, т. е. при температуре, которая гораздо ниже обычных температур твердофазного синтеза. Например, высокодисперсные порошки борида циркония с удельной поверхностью 40—125 м7г образуются при термическом разложении тетраборогидрида циркония Zr(BH4)4 под действием импульсного лазерного излучения [102]. Согласно [14], порошки, полученные термическим разложением мономерных и полимерных соединений, нужно дополнительно отжигать для стабилизации состава и структуры температура отжига нитридов и боридов составляет от 900 до 1300 К, оксидов п карбидов — от 1200 до 1800 К.  [c.36]

Механохимический синтез порошков боридов, карбидов, силицидов, оксидов, сульфидов переходных металлов был осуществлен взрывным методом в вибромельницах [109, 110] инициирование быстро протекающей реакции синтеза осуществлялось механоактивацией порошков исходных компонентов (металла и углерода, бора или кремния) в течение нескольких минут. Изучение Порошков карбидов бора, титана, циркония, гафния, ванадия, тан- 1 ла, вольфрама, полученных механохимическим синтезом в Мельницах, показало, что средний размер частиц составляет 6— нм [111]. Порошки нитридов переходных металлов с размером  [c.39]

Промышленное производство режущей оксидной керамики из Al Og началось более 45 лет тому назад, а в 50-е годы были созданы сплав ЦМ-332 (Al Og и до 1 % оксидов других металлов) в нашей стране, керамический материал кермет (2-10 % Мо или Сг, остальное Al Og) и оксидно-карбидная керамика (20 - 40 % простых или сложных карбидов переходных металлов IV - VI групп Периодической системы Д.И.Менделеева - титана, молибдена, вольфрама и др., остальное AI2O3) за рубежом.  [c.126]

Нитриды. Нитриды переходных тугоплавких металлов можно получить, воздействуя азотом или азотсодержаш,ими газами на металлы, их оксиды, гидриды или другие соединения. Среди известных способов получения порошков наибольший практический интерес представляют следуюш,ие  [c.165]

СГ2О3 И другие ОКСИДЫ, карбиды и нитриды переходных метал-  [c.170]

Магнитные материалы наряду с полупроводниками и диэлектриками жизненно важны для электронной промышленности, поэтому они заслуживают особого рассмотрения. До недавнего времени круг магнитных материалов ограничивался кристаллически- ми металлическими сплавами, интерметаллидами и оксидами (ферриты и т. п.). Однако в последнее время интенсивно исследуется магнетизм аморфных металлов и сплавов и уже отчетливо просматриваются некоторые направления практического использования аморфных магнетиков. В настоящее время находят применение магнитномягкие ленточные аморфные ферро- и ферримагнетики, представляющие собой сплавы переходных металлов с металлоидами. Научная проблема получения таких материалов путем быстрого охлаждения из жидкого состояния сегодня становится важной прикладной отраслью техники. Можно утверждать, что вслед за эрой кристаллических магнитных материалов наступит эра новых магнитных металлических материалов, каковыми являются аморфные сплавы.  [c.121]

Ферромагнетизм наблюдается в Зй -переходных металлах (железе, кобальте, никеле), в гадолинии и некоторых других редкоземельных металлах а также в сплавах на их основе и интер-металлидах. Ферримагнетики — это сложные оксиды, содержащие ферромагнитные элементы. Так как все перечисленные вещества являются кристаллическими, можно было бы предположить, что для параллельного упорядочения магнитных моментов необходимо наличие регулярного расположения атомов. Однако в 1947 г. Бреннер [1] наблюдал явление ферромагнетизма в полученной электролитическим осаждением аморфной пленке Со — Р. Позже Губанов [2] теоретически показал, что для упорядоченности магнитных моментов регулярность и симметрия атомных конфигураций необяза-  [c.122]

Ряд лигатур был получен нами при силикотермическом восстановлении бора. Было установлено, что введение в шихту оксида кальция (18 % от количества борного ангидрида) обеспечивает извлечение бора до 50 % В присутствии элементов переходной группы восстановление бора повышается ло 61—90 % [134]. При плавках на шихте, содержащей 20 % дпбората кальция, 60 % ферросилиция ФС75, 10 % плавикового шпата, 10 % тптана и извести 70—85 % от количества восстановителя получали кремнистый металл с содержанием 1,7—2,1 % В, 4,0—  [c.332]


Смотреть страницы где упоминается термин Оксиды переходные : [c.678]    [c.577]    [c.96]    [c.580]    [c.527]    [c.266]    [c.266]    [c.51]    [c.76]    [c.633]    [c.76]    [c.128]    [c.24]    [c.137]    [c.26]    [c.99]    [c.210]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.21 ]



ПОИСК



1---переходные

Оксиды



© 2025 Mash-xxl.info Реклама на сайте