Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталость металлов (определение)

Переменные напряжения (растягивающие, первого рода), в том числе и знакопеременные напряжения, как известно, вызывают явление усталости металлов. Если переменные напряжения превышают, величину предела усталости металла, то через некоторое число циклов переменных нагружений, которое тем меньше, чем больше напряжения, развиваются треш,ины усталости и деталь разрушается (кривая 1 на рис. 233). Ниже определенного значения переменного напряжения (предела усталости) металл не разрушается даже при очень большом числе циклов, так как это напряжение является асимптотой для кривой усталости.  [c.336]


Испытания на коррозионную усталость металлов проводят на обычных машинах для определения предела усталости, к которым приспособлены устройства для осуществления подвода коррозионной среды к образцу (рис. 340), или на специально предназначенных для испытаний металлов на коррозионную усталость машинах. В испытаниях определяют число циклов N до разрушения образца при заданных напряжениях а и строят кривую зависимости числа циклов от напряжения (см. рис. 235).  [c.451]

При коррозионной усталости наблюдается снижение предела усталости но сравнению с пределом усталости металла в отсутствие коррозионного воздействия агрессивной среды. Пределом коррозионной усталости или коррозионной выносливости называется то максимальное напряжение, которое может выдержать образец при данном числе циклов в условиях коррозионного воздействия. Предел коррозионной усталости является условной величиной, а не истинным пределом, так как металл при длительных выдержках разрушится и без знакопеременных напряжений, а лишь от одной коррозии. Поэтому предел коррозионной усталости обусловливают числом циклов знакопеременных нагрузок, которые при испытаниях выдерживают образец металла при данном напряжении, т. е. цифровые значения предела коррозионной усталости относят к определенной базе испытаний (числу циклов).  [c.106]

Усталость — это полная потеря свойств (или разрушение) элемента конструкции, наступившая после действия на него переменной нагрузки, максимальная амплитуда которой по величине меньше статической, монотонно прикладываемой нагрузки, вызывающей разрушение этого элемента. Процесс разрушения и усталости металлов зависит от состава, особенностей металлургического процесса, геометрии образца (элемента конструкции), вида нагрузки, времени и условий внешней среды. Для композитов число влияющих параметров необходимо увеличить по крайней мере вдвое из-за наличия в материале двух фаз. Более того, необходимо также учесть и влияние поверхности раздела, что приведет к еще большему усложнению задачи. Конечно, ни одна приемлемая модель для предсказания процесса разрушения не мол<ет одновременно включить все вышеупомянутые параметры. Действительно, невозможно себе представить систему черного ящика , у которого на входе — весь комплекс переменных параметров, а на выходе — только скорость роста разрушения и время достижения предельного состояния. Поэтому не существует единого подхода для определения усталостного разрушения для металлов (которые по крайней мере при макроскопическом подходе рассматриваются как однородные). Для композитов проблема тем более усложняется вследствие присущей им неоднородности. Усталости композитов посвящены многочисленные работы. Достижения и современные тенденции в этой области обобщены в работах [49, 50].  [c.84]


Дефектом считается каждое отдельное несоответствие продукции установленным требованиям. Они различаются природой возникновения, размерами, формой, расположением в металле по происхождению подразделяются на металлургические, образовавшиеся при отливке и прокатке технологические, возникающие при изготовлении и ремонте деталей, различных видах их обработки эксплуатационные, появляющиеся после определенной наработки изделия в результате усталости металла, коррозии, износа и т. д., а также неправильного технического обслуживания и эксплуатации.  [c.4]

Между уровнем жаропрочности материала и его поведением при усталости наблюдается определенная связь. В частности, в таких легкоплавких металлах, как олово и свинец, усталостное разрушение уже при комнатной температуре проходит по границам зерен, в то время как в большинстве более теплопрочных материалов — по телу. Однако характер разрушения при усталости определяется не только жаропрочностью материала. Так в кадмии (температура плавления 321°С) оно происходит на телу, а в бериллии (температура плавления 1285°С) по границам зерен. Не строго соблюдается также зависимость между температурой плавления металла и наличием физического предела выносливости [3]. Например, при комнатной температуре сталь и алюминий повышенной чистоты имеют физические пределы выносливости, а никель, титан, медь, олово, свинец не имеют.  [c.143]

В целях исследования кинетики изменения микроискажений кристаллической решетки П рода в связи с усталостью металла образцы через каждую тысячу циклов нагружения снимали для рентгеноструктурного анализа и определения электродного потенциала. Микроискажения кристаллической решетки II рода оценивали по методу моментов.  [c.247]

Проблема усталости металлов может быть решена только в том случае, если будут разработаны достаточно надежные методы, позволяющие прогнозировать зарождение усталостной трещины, описать процесс ее развития и предсказать момент окончательного разрушения с учетом влияния основных конструктивных, технологических и эксплуатационных факторов. В большинстве выполненных исследований многоцикловой усталости металлов в качестве критерия разрушения принималось полное разрушение образца, что характерно для установок с прямым механическим нагружением, пли возникновение трещины определенных размеров, что характерно для электромагнитных и электродинамических и других установок, когда испытания проводятся в резонансном режиме.  [c.3]

Цель исследования деформационных и энергетических критериев, как и любых других критериев усталостного разрушения,— разработка методов оценки усталостного повреждения металлов с учетом напряжений, числа циклов нагружения, вида напряженного состояния, конструктивно-технологических и эксплуатационных факторов и на их основе разработка расчетных и ускоренных методов определения характеристик усталости металлов.  [c.47]

Новая система справочной информации для определения расчетных характеристик сопротивления усталости / Когаев В. П., Бойцов Б. В.— В кн. Механическая усталость металлов Материалы VI Междунар. коллоквиума. Киев Наук. думка, 1983, с. 309—314.  [c.434]

Основной задачей испытания на усталость является определение так называемого предела выносливости (усталости). Испытание на усталость согласно ГОСТу 2860—65 заключается в определении наибольшего напряжения Ощах, которое может выдержать металл образца или детали без разрушения от усталости, теоретически при неограниченном числе циклов нагружения. Такая зависимость изображается графиком, по-  [c.244]

При исследовании сопротивления усталости металлов в воздухе ГОСТ 23026 — 78 регламентирует длительность испытаний при /V = Ю цикл для металлов и сплавов, имеющих горизонтальный участок на кривой усталости, и 10 цикл для легких сплавов и других металлов, не имеющих истинного предела выносливости. При сравнительных испытаниях в воздухе для определения пределов выносливости рекомендуется база 5 Ю" и 20 10 цикл соответственно.  [c.30]


Традиционные методы изучения коррозионной усталости металлов базируются на определении числа нагружений или времени до разрушения циклически дефор-мируемых в коррозионной среде образцов при заданной амплитуде переменных напряжений или деформаций и построении кривых усталости в полулогарифмических или двойных логарифмических координатах. Такой подход хотя и дает ценную информацию о долговечности изделий, однако не позволяет более глубоко проанализировать стадийность разрушения. Поэтому в последние годы интенсивно ведут поиск новых кинетических подходов к оценке коррозионно-усталостного разрушения конструкционных материалов, которые базируются на законах механики разрушения, физики твердого тела, физики металлов, электрохимии и других фундаментальных наук. Рассмотрим кратко эти подходы.  [c.38]

ИЗУЧЕНИЕ КОРРОЗИОННОЙ УСТАЛОСТИ ПО ОПРЕДЕЛЕНИЮ НЕУПРУГИХ ДЕФОРМАЦИЙ МЕТАЛЛА  [c.39]

Коррозионной усталости в определенных условиях подвержены практически все конструкционные сплавы на основе железа, алюминия, магния, меди, никеля, титана и других металлов. Интенсивность влияния коррозионной среды на сопротивление усталости определяется ее агрессивностью, структурным состоянием металла, его дефектностью, состоянием поверхности изделий, их геометрией и условиями нагружения. Наиболее полно изучена коррозионная усталость углеродистых и легированных сталей и значительно меньше — сплавов титана, алюминия и других металлов.  [c.49]

Определение хрупкости и динамической усталости металла  [c.211]

Экспериментально-аналитические методы. Для определения предела усталости экспериментально-аналитическим методом может быть использовано несколько эмпирических формул, связывающих предел усталости металлов с разными характеристиками их статической прочности. Каждая из них имеет ограниченное применение, обусловленное используемым металлом или деталью.  [c.23]

У равнение Муратова. Интересный метод определения предела усталости металла был разработан в лаборатории динамической прочности Куйбышевского индустриального института П, В. Муратовым [18].  [c.24]

Для определения предела усталости металла (стали) методом Муратова испытания необходимо проводить на двух образцах, которые  [c.24]

При определении выносливости при высоких температурах на соответствующей кривой не возникает горизонтального участка (см. усталость металлов), поскольку разрушающая нагрузка непрерывно уменьшается с увеличением числа циклов. Пределом выносливости ot в условиях заданной температуры считают наибольшее напряжение, при котором образец выдерживает заданное число циклов. При этом обычно за базу принимают 5-10 , 10-10 , 50-10 и 100-10 циклов.  [c.421]

Схема напряженного состояния. Известно, что испытание на изгиб для усталости металлов является более мягким видом нагружения, и при переходе на циклические испытания при растяжении—сжатии или кручении уровень предела усталости может в большей или меньшей степени снижаться. В табл. 44 дается сопоставление пределов выносливости, определенных при различных видах нагружения для некоторых сталей, алюминие-  [c.159]

Для построения кривой усталости и определения предела выносливости испытывают не менее 10—15 одинаковых образцов. База испытания для определения предела выносливости принимается 10-10 циклов для металлов и сплавов, имеющих практически горизонтальный участок на кривой усталости, и 100-10 для металлов и сплавов, не имеющих такого участка. Для сравнительных испытаний база соответственно принимается 5-10 и 20-10 циклов.  [c.229]

Напряжения, возникающие в деталях машин в процессе эксплуатации, в большинстве случаев переменны во времени, причем они часто являются случайными функциями времени. Если уровень переменных напряжений превышает определенный предел, то в материале детали протекает процесс постепенного накопления повреждений, приводящий к образованию трещины, ее развитию и окончательному разрушению детали. Этот процесс условно называют усталостью металла, а соответствующее разрушение — усталостным.  [c.5]

Учет асимметрии. Для металлов, чувствительных к асимметрии циклов нагружения, согласно блок-схеме (см. рис. 2.8) предусмотрены два варианта приведение параметров кривой усталости или определение эквивалентной амплитуды нагрузочного режима. Из большого количества способов, предложенных для корректировки предела выносливости с учетом асимметрии, в табл. 2.10 приведены два способа, наиболее часто используемых в расчетах. В первом случае для построения расчетных зависимостей на диаграмме предельных напряжений используются пределы выносливости при симметричном s i и пульсирующем Sq циклах во втором — s i и предел текучести s .  [c.58]

Многие детали машин в процессе работы испытывают действие переменных во времени напряжений. Если эти напряжения превышают определенный уровень, то в металле детали начинают происходить необратимые изменения, которые приводят к образованию тре-ш,ины. Трещина, постепенно развиваясь, в конце концов вызывает быстро протекаюш,ее разрушение детали. Это явление называется усталостью металла.  [c.119]

В настоящее время такая важная характеристика механических свойств металла, как предел выносливости, определяется только в весьма ограниченных случаях. Причиной этого в первую очередь является сложность и длительность процесса построения кривой усталости и определения предела выносливости в соответствии с принятыми методами.  [c.215]


Одинг И, А., Гуревич С. Е. Определение зависимости циклического коэффициента чувствительности металлов к надрезам от эффективного коэффициента концентрации напряжений.— В кн. Усталость металлов. М. Изд-во АН СССР, 1960, с. 106—115.  [c.332]

ИВС —кривая усталости А В С — линия начала появления субмикроскопиче-ских трещин при поглощении металлом определенного количества энергии А С — линия начала образования микротрещин критическое число циклов. при достижении которого при напряжении, весьма близком к пределу выносливости, начинают возникать необратимые искажения кристаллической решетки и субмикроскопические тре1цины — критическое напряжение усталости, при котором разрушение наступает за Л/ц циклов а —циклическая константа разрушения (отрезок ВС ), равная разности между критическим напряжением II напряжением предела выносливости, выраженных в 1(асательных напряжениях (0= t i ).  [c.84]

Исследование закономерностей усталостного разрушения металлов показало, что длительность периода развития усталостных трещин может составлять основную часть общей долговечности образца. Известно, что отношение числа циклов, необходимых для зарождения трещины, к числу циклов распространения трещины до разрушения образца зависит от механических свойств материала и уровня амплитуды напряжения. С повышением амплитуды напряжения это соотношение понижается и в малоцикловой области числом циклов, необходимым для зарождения трещины, можно пренебречь, Прямые наблюдения развития микротрещииы при циклическом нагружении металлов позволяют высказать гипотезу о возникновении трещин критической длины в конце стадии зарождения, которой соответствует число циклов на экспериментально определенной линии повреждаемости (линия Френча). Трещины критической длины возникают также при нагружении исследуемых металлов с амплитудой напряжения, равной пределу усталости. При определенных условиях они являются нераспространяющимися трещинами и определяют предел усталости металлов с точки зрения механики разрушения.  [c.14]

Гуревич . E., Капитань III. Новый параметр для определения условий выращивания усталостной трещины при испытании на вязкость разрушения.— В кн. VII Всесоюз. конф. по усталости металлов (Москва, 23—25 ноября 1977 г.) Тез. докл. М., с. 24—25.  [c.258]

Некоторые динамические явления представляют серьезную опасность для конструкций, например, резонанс, возникающий в колеблющейся системе и состоящий в значительном нарастании, при определенных условиях, перемещений, а следовательно, и напряжений. Серьезную опасность для конструкций могут представить высокочастотные колебания с малой амплитудой. Так, вибрдция отрицательно влияет на работу приборов, снижая точность их показаний, на работу станков, понижая точность обработки на них деталей. Вибрация ускоряет износ деталей машин, например, зубьев колес зубчатой передачи. Вибрация может явиться одной из причин исчерпания выносливости (проявления усталости) металла. Весьма сложное и многообразное отрицательное воздействие оказывает вибрация на организм человека.  [c.8]

Это процесс постепенного накопления повреждений материала под воздействием переменных напряжений и коррозионно-активных сред, приводящий к изменению свойств, образованию коррозионно-усталостных трещин, их развитию и разрушению изделия. Этому виду разрушения в определенных условиях могут быть подвержены все конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Опасность коррозионно-усталостного разрушения заключается в том, что оно протекает практически в любых коррозионных средах, включая такие относительно слабые среды, как влажный воздух и газы, спирты, влажные машинные масла, не говоря уже о водных растворах солей и кислот, в которых происходит резкое, иногда катастрофическое снижение предела выносливости металлов. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, но наиболее она распространена в химической, энергетической, нефтегазодобывающей, горнорудной промышленности, в транспортной технике. Коррозионно-усталостному разрушению подвергаются стальные канаты, элементы бурильной колонны, лопатки компрессоров и турбин, трубопроводы, гребные винты и валы, корпуса кораблей, обшивки самолетов, детали насосов, рессоры, пружины, крепежные элементы, металлические инженерные сооружения и пр. Потеря гребного винта современным крупнотоннажным судном в открытом океане приносиГ убытки, исчисляемые миллионами рублей.  [c.11]

Испытания проводят на машинах, предназначенных для определения сопротивления усталости указанных объектов в воздухе. Машины снабжены специальными устройствами для подвода коррозионной среды и управления ее взаимодействием с деформируемым металлом (изменение концентрации кислорода и температуры, введение ингибиторов или депассиваторов, катодная или анодная поляризация образцов и др.). Поскольку конструкции большинства серийно выпускаемых промышленностью машин, принципы их работы, технические характеристики широко освещены в литературе, мы рассмотрим здесь лишь комплекс оборудования для изучения влияния масштабного, частотного и некоторых других факторов на сопротивление усталости металлов, разработанного в ФМИ им. Г.В.Карпенко АН УССР [79—82] и нашедшего применение во многих лабораториях научно-исследовательских организаций, вузов и промышленных предприятий. Так, для изучения влияния размеров образцов на их сопротивление усталостному разрушению примерно в иден-  [c.22]

Для определения сопротивления усталости металлов при повышенных температурах и внешних давлениях газовых и жидких агрессивных сред разработана установка [84], в которой силовой орган выполнен в виде электромагнита, вращающегося вокруг герметичной камеры. Электромагнит приводит в круговое движение ролик, расположенный в этой камере и закрепленный на свободном конце неподвижного образца. Установка (рис. 9) состоит из корпуса 16, камеры 11, электропечи 12. Вал привода, жестко соединенный с траверсой 8, вращается электродвигателем 7. На траверсе расположены электромагнит постоянного тока S и противовес 4. Электромагнит притягивает к в 1утренней стенке камеры массивный ролик-якорь 6, который вращается на удлинителе 5, жестко соединенном с образцом 10, и одновременно обкатывается по камере. Сила тока на катушках электромагнита устанавливается такой, чтобы ролик постоянно касался стенки рабочей камеры, не создавая при этом заметного усилия. Частота кругового консольного изгиба образца 25 Гц. Амплитуда деформации задается диаметром сменных роликов-якорей  [c.26]

Решение проблемы экологии виброакустической динамики и диагностики машин. Одной из проблем, требующих учета при разработке эффективных путей повышений надежности и ресурса, является акустическая динамика машин, а также акустическая усталость металла и других материалов. Изучение причин и источников шумовых эффектов в машинах и разработка задач динамики машин, связанных с полной или частичной локализацией шумов определенных уровней, позволяет создать принципы и методы малошумного исполнения машин. Сюда следует отнести демпфирование колебаний, виброамортизацию, балансировку и уравновешивание, качественную технологию изготовления и сборки. Основные направления решения этих задач изложены в работе [1]. Таким образом, проблемы надежности и ресурса не могут быть полностью решены как ужо отмечалось, без учета эргономического и экологического аспектов этой проблемы.  [c.25]


Цыгельный И.М., Корнблюм А.И., Новачинский М.С. и др. Создание измерительно-вычислительного комплекса ИВК-9 для механических испытаний и его использование для определения малоцикловой усталости металлов. - В кн. IV Всесоюз. симпоз. Малоцикловая усталость - механика разрушения, живучесть и материалоемкость конструкций Тез, докл. и сообщ. Краснодар, 1983. М. ЦП НТО Машпром , 1983, с. 19-20.  [c.156]

Для энер.гомашиностроения представляет интерес определение ресурса конструкции в условиях нестационарного режима внешнего воздействия. Здесь можно воспользоваться понятием поврежденности, как это было показано ранее в гл. 20 Усталость металлов при циклических нагрузках-. Однако при наличии таблиц допускаемых напряжений упомянутый прием несколько видоизменяется. Введем понятие относительного использования ресурса П при стационарном нагружении  [c.411]

В результате этого стенки трубных отверстий на определенной глубине имеют остаточную деформацию, а диаметры некоторых трубных отверстий становятся больше номинального на 5—10%. Частые подвальцовки (а порой и перевальцовки труб) создают в металле трубного отверстия наклеп, по мере увеличения степени наклепа твердость и прочность металла возрастают, а пластические свойства снижаются. Металл стенок труб становится хрупким, получить прочное и плотное вальцованное соединение в таких трубных отверстиях невозможно, поэтому при ремонте котлов такие соединения заменяют сварочными. Выполнение вальцованных соединенн с соблюдением технологии вальцевания труб является надежным средством борьбы с последствиями деформации и наклепа стенок трубных отверстий, носящими название вальцовочной усталости металла.  [c.52]

Практически нет возможности осуществить испытание с неограниченным количеством циклов. Поэтому для определения предела усталости задаются определенной базой испытанан т. е. некоторым определенным числом циклов, причем при выборе этого числа считаются также с фактической длительностью эксплуатации изделия, и из опытов определяют то наибольшее напряжение, при котором образец не разрушается в течение этого числа циклов. Для сталей база испытаний устанавливается обычно в пределах 10 10 циклов, а для цветных металлов — до 5-4-10 10 циклов и более. При этом прини-  [c.305]

Переменные нагрузки (растяжение-г-сжатие) и одновременное действие агрессивной среды вызывают коррозионно-усталостные разрушения металлов. В обычных условиях, ниже определенных значений переменного напряжения (числа циклов Л ), так называемого предела усталости, металл не разрушается. При одновременном действии среды этот предел снижается, т. е. ра зрушение наступает при меньшей нагрузке (числе  [c.55]


Смотреть страницы где упоминается термин Усталость металлов (определение) : [c.168]    [c.193]    [c.77]    [c.32]    [c.426]    [c.59]    [c.276]    [c.334]    [c.423]   
Металловедение и термическая обработка (1956) -- [ c.44 ]



ПОИСК



Изучение коррозионной усталости по определению неупругих деформаций металла

Усталость

Усталость металлов



© 2025 Mash-xxl.info Реклама на сайте