Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение усталостное периоды развития

Представление о соотношении между периодом развития трещины и долговечностью материала в разных областях много- и малоцикловой усталости может быть получено при более детальном рассмотрении кривой усталостного разрушения материалов по стадиям накопления повреждений и роста трещин [27]. В ходе циклического нагружения при постоянном уровне переменного напряжения в материале протекает первоначально процесс накопления необратимой повреждаемости, и при достижении некоторого критического уровня плотности дефектов происходит возникновение начальной поверхности трещины или зоны очага  [c.55]


Стойки шасси ВС имеют разнообразные конструктивные элементы, разрушение каждого из которых может приводить к серьезным последствиям в процессе выпуска или уборки шасси, совершения посадки и руления. В зависимости от зоны расположения детали, вида ВС и условий нагружения элемента конструкции усталостные трещины могут возникать на разных стадиях эксплуатации, и период развития треш ины может существенно различаться не только количественно, но сама природа развития трещин может соответствовать разным процессам разрушения. В связи с этим представляет интерес оценка и сопоставление между собой процесса распространения трещин в одноименных деталях, но по разным сечениям (зонам), а также по разным элементам конструкций, но в одной зоне узла. Применительно к разным типам ВС и зонам стоек шасси повреждения деталей могут происходить за полетный цикл нагружения на разных этапах полета — в процессе руления, на разворотах или при уборке или выпуске шасси. В результате этого накопление повреждений в детали происходит в разных зонах с различной длительностью для стадии зарождения и периода роста трещины, что приводит к необходимости введения дифференцированной периодичности осмотров детали для разных ее зон.  [c.773]

Возможность осуществления как жесткого, так и эластичного нагружения образца. Это требование обусловлено особенностями работы деталей, поскольку усталостное разрушение может развиваться при постоянных значениях не только амплитуды усилия, но и амплитуды деформации материала. В этом случае закономерности сопротивления усталости (например, в период развития трещин или при деформировании материала в упруго-пластической области) существенно различны и их следует изучать с учетом особенностей нагружения, имеющих также большое значение при исследовании утомляемости полимерных материалов, механические свойства которых, а следовательно, и силовой режим испытаний изменяются в процессе повторно-переменного деформирования.  [c.53]

Выполненные в последнее время работы [9, 10, 11] свидетельствуют о существовании (взаимодействия между напряжениями различной величины (при случайном их чередовании), а также о существовании нижней границы повреждающих напряжений спектра, распространяющихся ниже исходного предела усталости. Авторы указанных выше работ экспериментально подтвердили справедливость предположения о том, что недогруз ки.в период развития трещины становятся активными и участвуют в накоплении повреждения. Следует ожидать, что дальнейшие исследования в этом направлении внесут коррективы в методику расчетов на усталость при нестационарных режимах нагружения в зависимости от способа ведения расчета (по критерию трещинообразования или по критерию разрушения). Вместе с тем работ, посвященных изучению кинетики усталостного разрушения, сравнительно немного, что, по-видимому, объясняется отсутствием надежной и доступной аппаратуры для наблюдения за ростом трещин усталости.  [c.183]


Температура. Температура испытаний по-разному влияет на закономерности стабильного развития усталостных трещин в конструкционных сплавах на всех трех участках диаграммы роста усталостных трещин и на условия перехода от усталостного к хрупкому разрушению в различных температурных диапазонах. Стабильное развитие усталостных трещин характеризуется длительностью периодов развития, скоростью распространения усталостных трещин, величиной порогового коэффициента интенсивности напряжений Kth и т. п., а условия перехода от усталостного к хрупкому разрушению характеризуются температурой хрупкости площадью стабильного развития усталостных трещин на поверхности излома разрушенных образцов критической скоростью стабильного развития усталостных тре-  [c.146]

Процессы с запаздыванием начала повреждения характерны для усталостных разрушений. Так, например, исследование возникновения и развития трещин показало, что в начальный период работы конструкции они не обнаруживаются (рис. 26, ж), а затем развиваются по экспоненциальному закону  [c.107]

Формальная запись уравнения (1.18) без учета локального влияния структурного состояния материала на развитие малых трещин, когда имеет место немонотонное развитие процесса разрушения [100], свидетельствует о существенном влиянии трех параметров на длительность роста усталостных трещин вязкости разрушения материала К , действующего напряжения и размера начального дефекта. Небольшие по размеру дефекты на поверхности материала оказывают влияние на изменение доли периода роста трещины в долговечности.  [c.58]

Эволюция открытых систем осуществляется в упорядоченной последовательности реализуемых механизмов эволюции на масштабных различных уровнях. Они характеризуют собой свойство открытой системы поддерживать устойчивость в некоторый период времени в результате рассеивания и/или поглощения подводимой энергии. При достижении некоторых критических условий система не может сохранить неизменность процесса или механизма эволюции и происходит дискретный переход к новому более сложному процессу эволюции. Указанные переходы реализуются в соответствии с некоторой определенной иерархией на разных масштабных уровнях независимо от условий и способа подвода к системе энергии извне. Применительно к элементам конструкций это означает, что при всем многообразии эксплуатационного воздействия на металл в процессе роста трещины могут быть реализованы только те механизмы разрушения, которые присущи данному материалу и являются его свойством сопротивляться развитию усталостного разрушения.  [c.188]

При сопоставлении длительности всего периода роста трещины для всех исследованных дефлекторов показано, что повышение чувствительности контроля, когда трещина может быть обнаружена на ранней стадии ее развития вблизи очага разрушения, приводит к необходимости существенного увеличения времени между соседними осмотрами (см. рис. 10.4г). Максимальная продолжительность роста трещины составила около 300 полетов ВС, а минимальная продолжительность — около 170 полетов. При введении в эксплуатацию ультразвукового контроля, который может обеспечить обнаружение усталостной трещины на начальной стадии ее развития у очага в зоне непосредственного контакта деталей по замковому соединению, можно было рекомендовать увеличение периода времени между двумя соседними осмотрами до 150-200 ч (80-100 полетов). В этом случае сохранялась идея возможного, однократного пропуска трещины при контроле с сохранением высокой вероятности ее выявления при следующем контроле без разрушения дефлектора.  [c.541]

Все это потребовало подробного изучения закономерности развития усталостных трещин в лопатках с оценкой периода их роста для обоснования периодичности возможного эксплуатационно- го контроля по одной или по двум указанным сече- ниям разрушения. Наибольший интерес в этой части представляла лопатка (см. п. 8, табл. 11.3), в которой произошло развитие двух трещин с очевидными коррозионными повреждениями поверхности самой лопатки.  [c.575]

Место расположения очага разрушения и развитие усталостной трещины в лонжероне были подобны нескольким случаям, которые были исследованы ранее и рассмотрены выше. Это еще раз подчеркивало существование подобия закономерностей распространения усталостных трещин в лонжеронах лопастей по различным сечениям лопасти, на что было указано в ранее проведенных исследованиях. Подобие закономерностей распространения усталостных трещин в лонжеронах лопастей свидетельствует о подобии их нагружения в эксплуатации, а следовательно, позволяет проводить сопоставимые количественные оценки параметров усталостного разрушения. Применительно к задаче об оценке эффективности работы датчика-сигнализатора речь идет об оценке периода роста трещины.  [c.646]


Длительность среднего полета вертолета Ми-6 составляет около 1,6 ч. Поэтому развитие трещин происходило в течение 160, 224 и 256 ч для наработок после последнего ремонта 875,511 и 353 ч соответственно. Представленные оценки свидетельствуют о необходимости дополнительного периодического контроля ЗК в эксплуатации в межремонтный период. Их достоверность была подтверждена следующим фактом. При исследовании процесса зарождения трещин в ЗК с минимальной наработкой после последнего ремонта было доказано, что в зоне выкрошившегося шлица при ремонте была пропущена уже имевшая место небольшая по глубине трещина. В технологии ремонта допускалась эксплуатация ЗК с удаленной частью шлица, в котором отмечено возникновение усталостного выкрашивания. Опыт эксплуатации показал, что в этом случае, если нет трещины от шлиц в тело ЗК, дальнейшая эксплуатация ЗК является безопасной, так как возникает повреждение одного из следующих шлиц без разрушения самого ЗК и без нарушения его функционирования. Применительно к ЗК с наработкой после ремонта 353 ч, короткая трещина, зародившаяся от поверхности шлиц в тело ЗК, уже имелась, и с ней оно поступило в эксплуатацию. Из сопоставления оценки длительности роста трещины (256 ч) и наработки в эксплуатации после ремонта (353 ч) очевидно, что эти величины близки. Вместе с тем имеющиеся расхождения могут быть использованы для оценки длительности задержки трещины при ее переори-  [c.692]

Выполненные измерения шага линий и последующий их пересчет в число полетов показали, что длительность роста трещины в валу составила около 630 полетов ВС. К моменту разрушения наработка вала с начала эксплуатации составила 4333 полета. Следовательно, относительный период роста трещин в валу от дефекта материала составил (630/4333) 100 = 15 %. Полученная оценка относительного периода роста трещины согласуется с представлением о развитии разрушения в вале трансмиссии в области многоцикловой усталости. Более того, отсутствие несплошности в материале гарантирует более продолжительную эксплуатацию вала без возникновения в нем усталостной трещины, чем это имело место в рассматриваемом случае. Поэтому применительно к данной детали не было никаких оснований рекомендовать периодический контроль в эксплуатации с целью выявления трещин в валах. Достаточно было ограничиться рекомендациями по выявлению несплошностей в валах как на стадии их изготовления, так и в процессе ремонта, поскольку рассмотренный вал за время эксплуатации ремонтировали дважды.  [c.708]

Проведенный анализ показал, что применительно к случаям 1, 3, 6 (см. табл. 14.1) период распространения усталостной трещины составляет всего несколько тысяч циклов — в изломе были выявлены усталостные бороздки. В случае 1 развитие усталостной трещины в штифте, изготовленном из стали ЗОХГСА, происходило равномерно вплоть до зоны долома (рис. 14.8). На отдельных участках излома было выявлено растрескивание материала. На длине развития трещины около 2,3 мм длительность (число усталостных бороздок) роста трещины составила около 2600. Указанное число циклов нагружения с отмеченным растрескиванием материала, которое сопровождало рост трещины, свидетельствует о малоцикловом усталостном разрушении материала.  [c.742]

В период 1964—1968 гг. отдельные исследователи изучали усталостное поведение волокнистых композитов с металлической матрицей. Технология производства композитов быстро развивалась в течение этого периода, и поведение композитов при разрушении было непостоянным и непредсказуемым. Несмотря на эти трудности, были обнаружены некоторые важные качественные закономерности сопротивления усталости, которые служат предварительной основой для более быстрого развития современного понимания усталостной прочности композитов.  [c.396]

Исследование процессов развития усталостного разрушения и характеристик сопротивления усталости в пределах каждого этапа испытаний (до появления первой трещины и в период ее постепенного развития) в настоящее время приобретает все большее значение. Интерес к поэтапному исследованию усталости как материалов, так и натурных деталей особенно возрос в связи с изучением закономерностей накопления повреждений при нестационарно изменяющихся режимах нагружения, присущих эксплуатации большинства современных конструкций. -  [c.183]

Как указано выше, процесс разрушения металлов при циклическом нагружении можно условно разделить на три периода зарождение усталостной трещины, ее до-критический рост и долом. Поскольку первые два периода — определяющие, то именно на их изучении было сосредоточено основное внимание исследователей, причем раскрытию механизма и закономерностей роста усталостной трещины уделялось больше внимания, чем изучению начальной стадии разрушения, хотя она во многих случаях может определять долговечность детали. Что же касается влияния поверхностно-активных и коррозионных сред на кинетику усталостного разрушения металлов, то в силу сложности протекающих процессов этот вопрос не получил еще достаточного развития, а имеющиеся в литературе данные зачастую противоречивы.  [c.76]

Коррозионно-усталостное разрушение сталей с катодными покрытиями сопровождается понижением их электродных потенциалов от стационарных значений до —600) (—650 мВ), т.е. почти до их уровня у незащищенных разрушающихся сталей. Приложение напряжения к никелированным сталям из-за нарушения сплошности оксидных пленок вызывает сдвиг их потенциалов в отрицательную сторону до 10 мВ. Качественно характер изменения электродного потенциала химически никелированных образцов при испытании в коррозионной среде такой же, как на рис. 27. Длительность II периода также возрастает с повышением прочности стали. Интенсивное понижение потенциала на III участке соответствует моменту потери покрытием сплошности, проникновению коррозионной среды к основному металлу и развитию в нем локализованных процессов коррозионной усталости. Спонтанное разрушение образца сопровождается скачкообразным понижением потенциала на IV участке. Характер изменения электродных потенциалов и кинетика процесса разрушения хромирован-  [c.178]


Наиболее распространенное объяснение механизма влияния давления газовой среды на поведение материала при циклическом нагружении состоит в следующем. Развитию усталостной трещины в атмосферных условиях способствует слой газа или окислов, образующихся на поверхности трещины во время растягивающего полуцикла. Эти чужеродные слои препятствуют завариванию трещины в период сжатия. Ускорение развития трещины в подобных условиях может быть также объяснено снижением поверхностной энергии металла и расклинивающим эффектом окисной или другой фазы, находящейся в непосредственной близости от вершины растущей трещины. Скорость образования чужеродных слоев на поверхности раскрытой трещины при данной частоте нагружения зависит от давления газовой среды, вследствие чего сопротивление усталости увеличивается с улучшением вакуума. Ряд экспериментальных наблюдений, например [427 ] показывают, что возрастание долговечности в вакууме происходит более заметно при больших амплитудах циклической деформации. При малых амплитудах числа циклов до разрушения образцов в вакууме и на воздухе различаются гораздо меньше. Во многих случаях установлено, что повышение долговечности образцов с понижением давления газовой среды протекает не монотонно, а сравнительно резко только в определенном интервале давлений. Для технически чистого алюминия эта область давлений от 1,33 до 0,0133 (от 10" до 10 М.М рт. ст.). Удовлетворительное объяснение отмеченной закономерности пока отсутствует. При изучении усталости технического алюминия выяснилось, что на поверхности образцов, выдержавших в вакууме такое число циклов, которое приводило к разрушению материала на воздухе, отсутствовали усталостные макротрещины. Это наблюдение истолковано авторами работы [427] как свидетельство того, что давление газовой среды оказывает влияние не только на скорость развития усталостной трещины, но и на процесс их зарождения на поверхности металла.  [c.438]

В начальный период эксплуатации главных циркуляционных насосов наблюдались поломки соединительных муфт (зубьев шестерен), образовывались трещины в шпоночных пазах под ступицами полумуфт в валах насосов. Разрушения носили явно усталостный характер, а направления развития трещин на валах (под углом 45 к образующей вала) позволили предполагать, что разрушающими напряжениями являлись динамические напряжения кручения, возникающие в результате действия переменного крутящего момента.  [c.401]

Усталость металла — это разрушение его под влиянием периодической динамической нагрузки при напряжениях значительно меньших, чем предел прочности. В химической промышленности достаточно часто наблюдаются случаи такого разрушения деталей аппаратов и машин. Усталостное разрушение обычно сопровождается образованием меж- и транс-кристаллитных трещин, развитие которых идет главным образом в период приложения растягивающих напряжений (рис. 5.6). Склонность металла к усталостному разрушению характеризуется пределом выносливости.  [c.139]

Визуальный анализ раскрытых изломов дисков по трещинам показал, что они зарождались на поверхности одного или нескольких крепежных отверстий в ступице со стороны центрального отверстия и развивались в радиальном направлении к центральному отверстию (рис. 10.6). После прорастания трещины на всю толщину перемычки между крепежным и центральным отверстиями дальнейшее развитие трещин происходило в направлении обода диска с опасностью его разрушения по радиальному сечению. На участке перемычки, расположенной между отверстиями под болт крепления дисков к валу турбины и центральным отверстием дисков, изломы окислены на большей части до золотисто-серого цвета, а их строение на всей поверхности характеризуется внутризерен-ным ростом трещины, типичным для усталостного разрушения жаропрочных сплавов. У поверхности отверстия под болт, вблизи переднего торца ступицы, у каждого диска имеется зона наиболее интенсивного окисления поверхности, указывающая на длительный период развития трещины, а также свидетельствующая о том, что начальный этан разрушения связан с развитием в диске несквозной поверхностной трещины полуэллиптической формы (см. рис. 10.6 ).  [c.543]

При такой кинетике разрушения период развития многоцикловой усталостной трещины, рассчитанный но общему числу макролиний и блоков мезолиний, составляет около 190 полетов самолета для лопатки с максимальной наработкой на двигателе № А82У122108. Последняя проверка рабочих лопаток П1 ступени турбины этого двигателя по бюллетеню № 1043-БЭ проводилась за 74 ч до разрушения лопатки, что при средней продолжительности полетов за период после последнего ремонта двигателя в 2,6 ч составляет около 30 полетов. Из графика на рис. 2.25 видно, что 30 полетов до разрушения лопатки в момент ее проверки трещина в лопатке имела длину около 15-16 мм. Однако она не была выявлена при последнем контроле лопатки в то время, как опыт эксплуатации двигателей НК-8-2у показывает, что технология проверки  [c.619]

Исследование закономерностей усталостного разрушения металлов показало, что длительность периода развития усталостных трещин может составлять основную часть общей долговечности образца. Известно, что отношение числа циклов, необходимых для зарождения трещины, к числу циклов распространения трещины до разрушения образца зависит от механических свойств материала и уровня амплитуды напряжения. С повышением амплитуды напряжения это соотношение понижается и в малоцикловой области числом циклов, необходимым для зарождения трещины, можно пренебречь, Прямые наблюдения развития микротрещииы при циклическом нагружении металлов позволяют высказать гипотезу о возникновении трещин критической длины в конце стадии зарождения, которой соответствует число циклов на экспериментально определенной линии повреждаемости (линия Френча). Трещины критической длины возникают также при нагружении исследуемых металлов с амплитудой напряжения, равной пределу усталости. При определенных условиях они являются нераспространяющимися трещинами и определяют предел усталости металлов с точки зрения механики разрушения.  [c.14]

До 40-х годов нашего века развитие идей в этом направлении было незначительным. Это в основном связано с тем, что в традиционной схеме процесс распространения трещин оставался в стороне. Кроме того, существовавшее мнение о том, что разрушение наступает почти мгновенно, сразу указывало на ограниченность возможных построений таких критериев прочности, где константы зависят от размера начальных трещин, имеющихся в теле. В последующие десятилетия эта точка зрения была пере-, смотрена. Было установлено, что развитие трещины занимает значительный период, предшествующий полному разрушению, пр ичем это относится не только к усталостному и пластическому, но даже и к хрупкому разрушению. Так, например, для еили-катных стекол, для которых процесс разрушения считался практически мгновенным, скорость развития трещины в начале процесса в 10—100 млн. раз меньше, чем на заключительном этапе. В то же время экспериментальные факты свидетельствуют о том [53], что в правильно (по сопротивлению разрушению) спроекти-  [c.15]


Исследования литейного алюминиевого сплава Al-Mg-Si (6082) со средним размером зерна 155 мкм путем изгиба образцов 7x12x60 мм были проведены для сопоставления влияния состояния поверхности образцов на длительность периода роста усталостных трещин [101]. Были испытаны образцы с поверхностью непосредственно после литья (S ) и с полированной поверхностью (SP). Полировку осуществляли в две стадии шлифовкой пастой с размером абразива 3 мкм и затем электрополировкой. Изучение зоны зарождения усталостной трещины при последовательной наработке в испытаниях образцов показало, что период роста трещины до достижения длины на поверхности около 100 мкм составил 35-65 % для полированных и 2-10 % для неполированных образцов. Поэтому были проведены расчеты периода роста трещин по формуле механики разрушения от их начальных размеров 6 и 45 мкм до критической длины а . = 3 мм. Оказалось, что для долговечности образцов (2-3)-10 циклов имеет место почти совпадение расчета периода роста трещины с полной долговечностью (рис. 1.19). Далее наблюдается все большее расхождение расчетного периода роста трещины и долговечности образцов. Фактически для гладкой поверхности образца независимо от степени ее поврежденности (полированная и неполированная поверхность) имеет место резкая смена в условиях зарождения и роста трещины в районе длительности нагружения 10 циклов. Меньшие долговечности отвечают области малоцикловой усталости, и для нее весь период циклического нагружения связан с развитием усталостной трещины. Большие долговечности связаны с постепенным возрастанием периода зарождения усталостной трещины.  [c.58]

На практике (см. главу 1) закон накопления усталостных повреждений рассматривают на основе линейной гипотезы Пальмгрена-Майнера [96, 97] и в области малоцикловой усталости описывают связь между уровнем деформации и числом циклов до разрушения по соотношению Коффи-на-Мэнсона [85, 86]. Допущение о линейном накоплении повреждений тем достовернее, чем ближе развитие разрушения к области малоцикловой усталости, когда большая часть долговечности приходится на период роста усталостной трещины [90, 98-101].  [c.244]

Оценку длительности разрушения диска вели по аппроксимирующей зависимости шага бороздок от длины трещины, которая в пределах зоны, когда трещина была поверхностной, измерялась от очага разрушения, а далее — от поверхности центрального отверстия (рис. 9.52). Так как в пределах зоны развития трещины МЦУ разрушение материала было смешанным, то отставание шага усталостных бороздок от СРТ при расчете зачитывалось коэффициентом = 0,625. Помимо того, принималось, что один полет эквивалентен минимальному трехкратному продвижению трещины, что учитывалось коэффициентом Апцн = 0,333. Проведенный таким образом расчет показал, что период роста трещины в диске составлял около 1500 ПЦН.  [c.531]

Развитие усталостной трещины от очага разрушения происходило с формированием отчетливо наблюдаемых и регулярно расположенных усталостных макролиний. Закономерность регулярного расположения усталостных линий на поверхности излома отражает нагружение лопатки от полета к полету. Их подсчет показал, что длительность роста усталостной трещины составила 20 ПЦН. За последний период эксплуатации двигателя его наработка в течение 20 ПЦН составила около 48 ч.  [c.597]

Представленные результаты анализа кинетики усталостных трещин в лопатках компрессоров и турбин двигателей свидетельствуют в первую очередь о том, что в пределах существующих ресурсов двигателей происходят разрушения лопаток только из-за их повреждений. Само распространение трещин определяется вибронагруженно-стью лопаток на резонансных или близких к таковым частотах и с этой точки зрения разрушение лопаток является многоцикловым, а в некоторых случаях и сверхмногоцикловым — развитие трещин от единичных циклов нагружения. Однако количество полетных циклов может составлять всего от нескольких десятков до нескольких сотен циклов. Для каждой лопатки разброс периода роста трещины может быть получен из-за того, что возникающие повреждения располагаются на разном расстоянии от основания лопатки, т. е. сечение развития трещины оказывается различным образом нагружено. Этот факт должен быть учтен при установлении периодичности эксплуатационного контроля повреждений лопаток в эксплуатации из-за попадания посторонних предметов в проточную часть двигателя.  [c.615]

На протяжении развития трещины, выявленной в ЗК, происходило формирование регулярных макролиний усталостного разрушения, которые были использованы для оценки длительности роста трещины. Выполненная оценка показала, что длительность роста трещины составила около 110 полетов вертолета. Относительный период роста трещины с 5 ieT0M средней продолжительности полета вертолета 30 мин составил около 7,5 %. Сравнительно высокая доля периода роста трещины при наличии в материале металлургического дефекта подтверждает сказанное выше о влиянии зоны расположения дефекта материала на относительную долю периода роста трещины. В данном слз ае дефекты располагались по впадине зуба, где возникает высокий уровень напряжения от изгиба при контакте зубьев колеса. Поэтому и относительная доля периода роста трещины оказалась существенной. Помимо того, следует указать на то, что в рассматриваемом сл гчае трещина распространялась в полотно ЗК. В этом случае резкого нарастания уровня напряжений по мере увеличения длины трещины не происходило (подобная ситуация проанализирована выше). Это обстоятельство также повлияло на возрастание доли относи-  [c.691]

Выполненные фрактографические оценки регулярного рельефа излома в виде усталостных линий без учета остановок трещины при переориентировке ее плоскости показали, что длительность периода ее развития составляет около 100, 140 и 160 полетов для ЗК соответственно № 4, 5, 6 (см. табл. 13.2). Различие в оценках периода роста трещин в больщей мере связано с различиями в продолжительности второй фазы разрушения после переориентировки трещины, которая находилась в интервале 20-80 полетов. На первом этапе роста трещины после выкрашивания шлиц принципиального различия в характере распространения трещины и длительности ее роста не выявлено.  [c.692]

Добавление этой дополнительной длительности работы колес с усталостными трещинами к уже установленной для этапа распространения трещины свидетельствует о том, что для двух исследованных ЗК с наработкой 875 и 511 ч после последнего ремонта вся длительность работы детали с усталостной трещиной была существенно меньше после ее зарождения от шлиц. Следовательно, если в ЗК трещины отсутствовали во время ремонта, то существует высокая вероятность того, что в межремонтный период может происходить зарождение и развитие всего процесса усталостного выкрашивания шлиц, последуютцего зарождения и распространения магистральной усталостной трещины до разрушения ЗК. Поэтому для данного вида ЗК при допуске начального выкрашивания шлиц в эксплуатацию было введено дополнительное требование к однократному контролю ЗК при половине наработки межремонтного ресурса.  [c.694]

Изучение последовательности формирования макролиний показало, что на первоначальном участке развитие трещины происходило в течение около 27 полетов, на вторичном участке число полетов не превысило 5. Таким образом, суммарно распространение усталостной трещины от первоначально разрушенного шлица происходило в течение около 33 полетов. Малое число макролиний и значительное расстояние между ними подтверждают вторичный характер распространения усталостной трещины уже на высоком уровне нагружения рессоры, когда в ней произошло частичное усталостное выкрашивание шлиц. После этого условия нагружения вала в сечении распространения усталостной трещины не соответствуют расчетному режиму. В связи с этим полученная оценка длительности роста трещины не соответствует общей наработке вала рессоры в эксплуатации, и ее нельзя использовать для определения относительной доли периода роста трещины в общей наработке детали. Напряженность рессоры такова, что в пределах существующего ресурса в ней не зарождается усталостная трещина от рабочих нагрузок, если предварительно в ней не возникли первоначальные разрушения шлиц.  [c.706]

В изломах по всем исследованным трещинам были выявлены мезолинпи усталостного разрушения, шаг которых возрастал в направлении развития процесса разрушения (рис. 13.45). Во всех трещинах шаг мезолиний монотонно нарастал в направлении роста трещины, что свидетельствовало о регулярном нагружении шпангоута от полета к полету вертолета. Блоки мезолиний усталостного разрушения характеризуют развитие трещины в каждом полете вертолета, как это было продемонстрировано выше применительно к вертолету Ми-2. Поэтому они были использованы для оценки длительности роста трещины в полетах и часах из условия средней продолжительности полета вертолета 30 мин (см. табл. 13.4). Сопоставление длительности роста усталостных трещин в разных зонах для каждого вертолета свидетельствует о том, что первыми зародились трещины А1 и Б1 при реализованной ими длительности 950 и 1550 ч соответственно. Каждая из указанных трещин не достигла своего предельного размера, и ее стабильный рост в эксплуатации еще мог продолжаться значительный период времени. Полученная оценка длительности роста трещин, с учетом того факта, что трещины были далеки еще от предельного размера, позволила сделать следующий вывод. В пределах существующего межремонтного ресурса в 1000 летных часов зародившаяся первой усталостная трещина непосредственно после ремонта не достигнет своего предельного состояния до поступления вертолета в следующий ремонт.  [c.729]


Учитывая эквивалентность каждой усталостной мезолинии всему блоку нагрузок, представленному на рис. 14.1, оценка периода разрушения стрингера проводилась путем подсчета количества этих линий в изломе магистральной трещины. Для расчета в направлении развития трещины был измерен размер шага усталостных линий h. Результаты этих измерений представлены на рис. 14.3. Там же приведена расчетная зависимость периода  [c.734]

Выполненные расчеты длительности роста трещины по зависимости расстояния мезолиний от длины трещины показали, что ее развитие в тяге происходило длительное время в течение около 8600 полетов. К моменту разрушения в эксплуатации тяга наработала 4772 ч, после последнего ремонта ее наработка составила 255 ч. Из условия средней продолжительности полета вертолета 30 мин указанные периоды в полетах составляют соответственно около 9544 и 510. Выполненный расчет показывает, что трещина была пропущена в ремонте. Это объясняется тем, что, по условиям ремонта, с тяги не смывается краска, а неразрушающие методы ее контроля не применяются. Визуально же выявить трещину не было возможности потому, что ее развитие происходи.по квазихрупко с едва заметным раскрытием берегов трещины в принороговой области скоростей роста трещины. В этом случае только специально настроенная аппаратура может быть эффективна в выявлении усталостных трещин. Причем под слоем краски такие трещины не выявляются даже ею, если не проведено специальной оценки чувствительности аппаратуры и ее настройки, как это имело место с контролем панели крыла ВС в эксплуатации, когда трещины не были выявлены, а после снятия краски их размер оказался в несколько сотен миллиметров [1].  [c.749]

Не снижает до нуля стадию зарождения и большинство дефектов сварных соединений. Только при наличии в швах трещин, образовавшихся при сварке, или при наличии весьма острых непроваров можно ожидать сведения к минимуму С1адии инициирования усталостного разрушения. Однако здесь существенную роль играют остаточные напряжения. В частности, испытания крупномасштабных образцов со значительными острыми непроварами в средине шва (рис. 2, а, б) показали, что, когда дефект располагается в зоне высоких растягивающих остаточных напряжений (они создавались дополнительными наплавами), усталостные трещины зарождались и начинали развиваться практически после первых циклов нагружения образцов. Однако если такие непровары размещались в зоне сжимающих остаточных напряжений, началу зарождения трещины предшествовал значительный инкубационный период, соизмеримый с периодом ее развития [61.  [c.186]


Смотреть страницы где упоминается термин Разрушение усталостное периоды развития : [c.160]    [c.81]    [c.291]    [c.97]    [c.9]    [c.326]    [c.581]    [c.594]    [c.771]    [c.46]    [c.29]    [c.203]    [c.197]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.63 ]



ПОИСК



Период

Развитие усталостных разрушений

Усталостная

Усталостное разрушение



© 2025 Mash-xxl.info Реклама на сайте