Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полная симметрия в линейных молекулах

В свободной молекуле полный момент количества движения относительно ОСИ симметрии К к 2л)], конечно, должен быть целым, а следовательно, всегда существует определенное значение вращательного момента количества движения, компенсирующее нецелую величину электронного момента. [В линейной молекуле, где невозможно вращение вокруг оси симметрии, электронный (орбитальный) момент должен быть целым и равным Л (/г/2я).] Возбуждение невырожденных колебаний не влияет на момент количества движения относительно оси симметрии, но вырожденные колебания вносят колебательный момент количества движения относительно оси симметрии. Как указывалось ранее ([23], стр. 433), при однократном возбуждении колебания V колебательный момент количества движения равен  [c.67]


Электронные состояния многоатомных молекул в целом могут быть классифицированы по их свойствам симметрии. Для линейных многоатомных молекул применима та же классификация, что и для двухатомных. Для нелинейных многоатомных молекул ие имеет определенного значения не только полный орбитальный момент L, но и его проекция Lz. В связи с этим классификация уровней энергии значительно усложняется [2].  [c.649]

В настоящем параграфе модель Друде — Лоренца будет распространена на нелинейные процессы. Как мы уже убедились (см. разд. 1.11), возможен вывод фундаментального уравнения, содержащего классическое описание НЛО, при использовании нелинейной силы вследствие появления при этом поляризационных членов высшего порядка по в принципе достигается полное теоретическое объяснение важнейших экспериментально обнаруживаемых эффектов НЛО. Как и в линейном случае, кроме того, может быть дана количественная интерпретация функций восприимчивости высших порядков. Для этой цели следует воспользоваться определенными общими свойствами нелинейной теории, в частности свойствами симметрии, рассмотренными в разд. 1.22. В дальнейшем оказывается возможным ограничиться простейшим случаем нелинейной силы порядки величин отклонения X от положения равновесия и силовые постоянные кв, к в,. .. таковы, что в разложении силы (1.11-3) можно пренебречь членами третьего и высших порядков по сравнению с членами первого и второго порядков. В данном параграфе мы примем, что соблюдаются допущения разд. 1.11 для постоянной объемной поляризации молекула или кристалл будут считаться построенными из носителей заряда таким образом, что в отсутствие внешнего поля поляризация равна нулю.  [c.110]

Совершенно очевидно, что и в комбинационном спектре между собой комбинируют только те вращательные уровни, которые относятся к одинаковым полным типам симметрии. Правила отбора, связанные с симметрией по отношению к инверсии (с делением уровней на положительные и отрицательные), совпадают с правилами отбора для комбинационных спектров линейных молекул и молекул, являющихся симметричным волчком, т. е.  [c.521]

Ч. V 8 , число вращений вокруг осей х, у, г данного типа симметрии 251 Д, нарушение соотношения Ус в плоских молекул 490 А, типы симметрии (характеры) точечной группы 127, 144, 156, 15Э, 230, 274 Ag, Д , типы симметрии (характеры) точечной группы 134, 158, 274 Д, Д , Дц, колебательные состояния линейных молекул, их вращательные уровни 399, 401 Д—Д инфракрасные полосы (переходы) линейных молекул 409 Д—II инфракрасные полосы (переходы) линейных молекул 409 Д—комбинационные линии линейных молекул 297, 427 полная энергия состояний 532 Евн,. пост.> внутренняя энергия и энергия поступательного движения 532  [c.641]


Аналогично в случае состояния П линейной молекулы из произведения 1/2 X П находим компоненты Ех/ + Ез> , соответствующие состояниям П1/2 и Пз/2 или в случае состояния Е молекулы с симметрией из Е / X X Е получаем компоненты Ец + Ез . Полная электронная волновая функция системы с нечетным числом электронов точно так же, как и отдельная спиновая функция, всегда принадлежит к двузначному типу в противоположность системе с четным числом электронов, которая имеет однозначные типы.  [c.25]

Построение из одинаковых групп атомов. В том случае, когда две части, из которых строится молекула, одинаковы, всегда можно однозначно определить результирующие состояния, даже если симметрия отдельных частей является более низкой, чем симметрия молекулы. Это связано с тем, что даже при больших расстояниях между двумя частями может сохраняться полная симметрия молекулы. Положение очень похоже на рассмотренное ранее для линейных молекул.  [c.297]

Большое спин-орбитальное расщепление. До сих пор во всех рассуждениях данного раздела мы неявно принимали, что спин-орбитальное расщепление мало. Однако можно привести много примеров, когда это допущение оказывается неверным. В таких случаях необходимо комбинировать спиновую функцию с орбитальной функцией до определения типов симметрии результирующих состояний. Для линейных молекул положение будет точно таким же, как и для двухатомных молекул будет иметь место (со, )-или (йс, ю)-связь, что просто обозначается как случай с связи по Гунду (см. [22], стр. 337 и след.). Результирующие состояния можно описать как состояния 2, /21 для нечетного числа электронов и как состояния 0+, 0 , 1, 2, 3,. .. для четного числа электронов — в полной аналогии с тем, что было сделано для двухатомных молекул. Можно, однако, использовать обозначения, введенные для других многоатомных молекул, так что вышеуказанные состояния будут записываться соответственно как состояния типа 1/2, 3/2,. .. и как состояния типа 2, 2", П, А и т. д. Эти обозначения использованы в табл. 32.  [c.346]

Свойства симметрии и статистические веса. Как и в случае двухатомных и линейных многоатомных молекул, вращательные уровни симметричного волчка являются либо положительными , либо отрицательными ", в зависимости от того, меняет ли свой знак полная собственная функция при отражении всех частиц в начале координат или не меняет. Однако в данном случае  [c.38]

Необходимо подчеркнуть, что конкретный вид только что обсуждавшихся нормальных колебаний зависит от нашего выбора неприводимого представления. Если бы мы воспользовались каким-либо эквивалентным неприводимым представлением, то получили бы смесь колебательной и вращательной мод. В случае свободной молекулы мы нашли трансляционную моду и сумели отделить ее от колебательных мод. Для этого на самом деле необходимо было воспользоваться трансляционной инвариантностью, которая не входит в число преобразований симметрии треугольной молекулы, положенных в основу нашего рассмотрения. Можно было бы, например, прикрепить нашу систему пружинками к жесткой плоскости таким образом, что для точного решения задачи о ее колебаниях потребовалось бы смешать трансляционные и колебательные моды. Для отделения этих мод друг от друга необходима какая-то дополнительная информация помимо информации о треугольной симметрии системы. Точно так же в атоме водорода любая линейная комбинация 2р- и Зр-состояний преобразуется по представлению полной  [c.56]

Такое вырождение возникает из-за того, что симметрия электронного гамильтониана в линейной конфигурации молекулы (т. е. Do h см. гл. 12) выше, чем в нелинейной конфигурации (т. е. av). Однако симметрия ровибронного гамильтониана не приводит к возникновению вырождения, а совместной группой МС для всех четырех электронных состояний NO2 является группа 2v(M) или группа ППИЯ (полная группа перестановок и инверсий) ядер молекулы. Из неэмпирических (аЬ initio) расчетов следует, что энергия состояния В имеет минимум в изогнутой конфигурации с неравными длинами связей [65]. Однако из-за наличия небольшого потенциального барьера между симметрично-эквивалентными формами имеет место туннелирование и группой МС электронного состояния В является группа 2v(M).  [c.338]

Озб удваивается полученную расширенную молекулярную (РМ) группу обозначим Озе (РМ) по аналогии с расширенной группой симметрии линейной молекулы, используемой для раздельной классификации вращательных и вибронных волновых функций. Характеры группы Озе (РМ) приведены в табл. А. 25, где дополнителы1ые неприводимые представления обозначены индексом d [56]. Отметим, что полная волновая функция не может относиться к d-представлениям.  [c.404]


Если линейная молекула принадлежит к точечной группе Dooh, т- е. имеет центр симметрии (как, например, молекула С Н ), то, помимо свойств симметрии по отношению к инверсии, появляются свойства симметрии по отношению к перестановке одинаковых ядер—собственная функция может быть симметричной или антисимметричной. Полная собственная функция < системы (без учета собственной функции спина ядра) остается неизменно или меняет свой знак при одновременной перестановке всех ядер, расположенных по одну сторону от центра, с ядрами, расположенными по другую сторону. Мы называем соответствующие вращательные уровни симметричными или антисимметричными. Ниже будет показано, что точно так же, как и в случае двухатомных молекул, имеющих одинаковые атомы, либо положительные вращательные уровни являются симметричными, а отрицательные—-антисимметричными, либо отрицательные уровни являются симметричными, а положительные—-антисимметричными. Первая возможность осуществляется для симметричных электронных состояний (состояний при отсутствии колебаний для этого случая на фиг. 4 указана симметрия буквами в скобках.  [c.27]

Выражение (2 7 [ 1) если не учитывать постоянный множитель, определяемый ядерным спином (см. стр. 39), представляет полный статистичзский вес только в случае молекулы, случайно являющейся сферическим волчком, или молекулы, у которой спины одинаковых ядер очень велики. Сложнее обстоит дело для молекулы, являющейся сферическим волчком в силу своей симметрии и имеющей малые спины одинаковых ядер добавочный множитель, на который следует умножить (2 7- -1)-кратноэ пространственное вырождение для получения полного статистического веса, не будет равен просто (2 74-1), умноженному на множитель, зависящий от спина ядра. Как будет более подробно показано в гл. IV, в случае тетраэдрических молекул (точечная группа Т ,), таких как СН4, СО , СС1,, Р , получаются три типа симметрии вращательных уровней, называемых А, Е я Г, которые аналогичны симметричным (я) и антисимметричным а) уровням линейных симметричных молекул и уровням А и Е молекул с осью симметрии третьего порядка. Оказывается, что за исключением самых низких вращательных уровней все три типа уровней возникают при данном значении 7 ). Число подуровней каждого типа меняется по  [c.52]

Симметрия полной колебательной собственной функции, разумеегся, определяется опять поведением множителей, входящих в нее, относительно операций симметрии. Если, например, в линейной трехатомной молекуле типа XY. возбуждается по одному кванту каждого из трех нормальных колебаний (фиг. 25, б), то полная собственная функция будет антисимметричной по отношению к отражению в плоскости, проходящей через атом X перпендикулярно оси молекулы, однако она будет вырожденной относительно поворота на произвольный угол вокруг оси молекулы.  [c.117]

Свойства симметрии вращательных уровней. Как мы уже видели в гл. I, раздел 1, вращательные уровни линейных молекул являются положительными или отрицательными в зависимости от того, остается ли при мнверснгг полная собственная функция неизменной или меняет свой знак для наинизшего колебательного уровня (как в гл. I) и для всех полносимметричных возбужденных колебательных уровней (принадлежащих к типу симметрии И ) электронного основного состояния. Четные вращательные уровни являются положительными, нечетные — отрицательными (см. фиг. 4). Это справедливо, если предполагать, что электронное основное состояние является также полносимметричным. Для колебательных уровней (совершенно так же, как и для электронных состояний двухатомных молекул) четные колебательные уровни являются отрицательными, нечетные—-положительными. Для колебательных уровней Б, Д,... (как и для электронных состояний П, Д,... двухатомных молекул) каждому значению соответствует положительный и отрицательный уровни, очень мало различающиеся величиной энергии (см. ниже), порядок которых чередуется  [c.400]

Снова нужно рассмотреть возмущения типа Ферми и Кориолиса, каждое из которых может вызвать колебательные или вращательные возмущения. Взаимодействовать могут только уровни с одинаковой полной симметрией, с одинаковыми числами J и с ААГ=0, 1. За исключением отличия в типах симметрии, рассуждения совершенно аналогичны нашим прежним рассуждениям для случаев линейных молекул. Однако нужно учитывать, 410 вращательные уровни Е не могуг быть расщеплены каким бы то ни было взаимодействием врап1ения и колебания (см. Вильсон [934]). В отличие от действия сил Кориолиса, рассмотренного выше, которое приводит к расщеплению вырожденных колебательных уровней при увеличении числа К и является эффектом первого порядка, кориолисовы возмущения, рассматриваемые нами сейчас, являются эффектами второго и более высоких порядков, так как они обусловлены взаимодействием двух различных колебаний в результате наличия сил Кориолиса. Как и для линейных молекул, в данном случае этот эффект обычно весьма мал. Для молекул, принадлежащих к точечной группе Сщ, из правила Яна, приведенного ранее (стр. 404), сразу вытекает, что возможны кориолисовы возмущения между колебательными уровнями Ai и Е, А-, и Е, Ai я А , Е и Е. Для первых двух пар уровней возмущение должно возрастать с увеличением числа J, для последних двух пар оно должно возрастать с увеличением числа К. До сих пор ни один из подобных случаев не изучался подробно. Частным случаем таких возмущений является удвоение типа К, рассмотренное выше, т. е. расщепление уровня с данным J и при условии, что типы полной симметрии двух составляющих уровней являются  [c.443]

В применении к линейным (и двухатомным) молекулам полное свойство симметрии (-Ь) и (—) обозначает поведение электронно-колебательно-вра-щательной волновой функции при инверсии и имеет большое значение. В аксиальных молекулах это не имеет столь большого значения, пока очень высок потенциальный барьер, который надо преодолеть при инверсии. Если барьер высок, то кажды1г рассмотренный ранее уровень в действите.тьности  [c.93]


Изогнутая трехатомная молекула, образовавшаяся (при возбуждении) из несимметричной линейной молекулы, относится к точечной группе s, а из симметричной линейной молекулы — к точечной группе v с осью симметрии второго порядка (Сг) в плоскости изогнутой молекулы. Для изогнутых молекул с четырьмя, пятью и более атомами, которые образуются из симметричных линейных молекул, точечные группы могут также быть ih, С 2 и i. Более подробно мы рассмотрим только три случая С , - h и s- На фиг. 81 показаны переходы между первыми вращательными уровнями для четырех различных типов изогнуто-линейных переходов в случае, когда верхнее состояние молекулы относится к точечной группе С и, а в нижнем ( Sg) состоянии молекула линейна (точечная группа Do h). Свойства симметрии враш ательпых уровней приведены для четырех типов электронно-колебательных уровней точечной группы С2в- В скобках приводятся соответствуюш ие типы для группы С2h- При этом предполагается, что в случае точечной группы ось С 2 направлена по оси Ь, а в случае С ал — по оси с. Примененная здесь классификация врап ательных уровней по свойствам симметрии соответствует вращательной подгруппе, а не полной группе симметрии (гл. I, разд. 3,г). Для точечной группы s две левые схемы соответствуют состоянию типа А, две правых — состоянию типа А". Кроме того, для этой точечной группы вращательная подгруппа не обладает никакой симметрией, и, следовательно, обозначения А ж В вращательных уровней могут быть опущены. В нижнем состоянии, для которого приведен только самый низкий колебательный уровень (Z = 0), свойства симметрии S ж а онределены, разумеется, лишь для симметричных молекул. Помимо полных типов симметрии, на схеме обозначены также свойства симметрии вращательных уровней (+или—) в соответствии с правилами, приведенными в гл. I, разд. 3,а и 3,г (где рассматривается поведение волновой функции при инверсии).  [c.196]

Помимо этого, как и в случае линейных молекул, существуют правила отбора для полных свойств симметрии. Правило отбора для свойств симметрии плюс и минус (симметричность или антисимметричность полной волновой функции по отношению к инверсии) такое же, как и для линейных молекул, т. е.  [c.222]

Нек-рые представления о форме и геометрии, симметрии М., состоящей из данного набора атомов, можно получить на основе симметрии молекулы и концепции молекулярных орбиталей (МО). В зависимости от знака вклада, вносимого электроном данной МО в полную энергию М., МО наз. разрыхляющими или связывающими связывающие участвуют в образовании прочных хим. связей, а разрыхляющие — не участвуют. Число связывающих и разрыхляющих МО зависит только от симметрии расположения атомов в М. Поэтому определение устойчивой формы М. сводится к нахождению такого расположения атомов, к-рому соответствует наиб, число связывающих МО. Напр., в случае СН для тетраэдрич. расположения четырёх атомов Н вокруг С (симметрия Т ) получается наиб, число связывающих МО — 8 (напр., для симметрии их 6). Разл. МО вносят разный вклад в эн гию, и поэтому этот метод не всегда применим, но в большинстве случаев он правильно предсказывает геом, симметрию М. (напр., он позволяет установить, что М Н3О — нелинейная, М. СОа — линейная), особенно геом. симметрию М. в возбуждённых электронных состояниях. Структурные параметры для осн. электронного состояния мн. М. определены методами газовой электроно-  [c.186]

Для двухатомных и линейных многоатомных молекул алектронные состояния характеризуются, в силу на,личия осевой (аксиальной) симметрии, значениями квантового числа Л, определяющего абс. величину проекции полного орбитального момента Ъ на ось молекулы. Состояпия с Л = О, 1,2, 3, 4 обозначают прописны.ми греч. буквами 2, П, Д, Ф, Г (аналогично обозначепиям Л, Р, В, Р, ( для состояний сР = О, 1, 2, 3, 4 см. Атомные спектры), указывая индексом слева сверху мультиплетность х == 2 9- - 1. iiaпp., 2П обозначает молекулярный терм с А = 1,  [c.295]


Смотреть страницы где упоминается термин Полная симметрия в линейных молекулах : [c.364]    [c.238]    [c.117]    [c.91]    [c.115]    [c.239]    [c.472]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.27 , c.400 ]



ПОИСК



SU (3)-Симметрия

Линейные молекулы

Полная симметрия

Полная симметрия в молекулах с симметрией Csv



© 2025 Mash-xxl.info Реклама на сайте