Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частота Влияние на процесс сгорания

Однако если случайные колебания давления совпадут с собственными частотами системы подачи или акустическими характеристиками камеры сгорания, то могут возникнуть периодические колебания с частотами, характерными для системы. Возникнув, они могут затухнуть, стабилизироваться или усилиться под влиянием процесса горения. Постоянное наличие колебаний внутрикамерного процесса обычно характеризуется как неустойчивое горение. Случайные пульсации могут налагаться на периодические колебания, как показано на рис. 92. Отсутствие периодических колебаний рассматривается как устойчивое горение.  [c.172]


На характер протекания процесса сгорания оказывает влияние большое количество различных факторов параметры процессов впуска и сжатия, качество распыливания топлива, частота вращения коленчатого вала двигателя и т. д. Зависимость параметров процесса сгорания от целого ряда факторов, а также физико-химическая сущность процесса сгорания моторных топлив пока что изучены недостаточно полно.  [c.51]

На процесс сгорания карбюраторного двигателя оказывают влияние состав рабочей смеси, вихревые движения заряда, угол опережения зажигания, частота вращения коленчатого вала, нагрузка на двигатель, форма камеры сгорания и степень сжатия. Рабочая смесь быстрее всего сгорает при коэффициенте избытка воздуха = 0,85...0,95. В этом  [c.144]

Индикаторный к. п. д. при изменении скоростного режима работы двигателя зависит непосредственно от частоты вращения, а также от коэффициента избытка воздуха, который также зависит от частоты вращения коленчатого вала T j (а, Пд). Зависимость т) от частоты вращения при сохранении неизменным а объясняется противоположным влиянием двух факторов с одной стороны, с уменьшением Пд возрастают потери в систему охлаждения, что ведет к понижению rij, с другой стороны, при уменьшении Пд доля хода поршня, затрачиваемая на процесс сгорания, уменьшается, что вызывает повышение rif. В связи с тем что влияние одного фактора частично компенсируется другим, влиянием частоты вращения вала на индикаторный к. п. д. в области относительно низких значений коэффициента избытка воздуха можно пренебречь. Индикаторный к. п. д. с понижением частоты вращения коленчатого вала при работе двигателя по внешней характеристике может несколько понизиться за счет отсутствия регулирования угла опережения впрыска топлива. При сохранении постоянного угла опережения впрыска топлива с уменьшением частоты вращения коленчатого вала горение начинается с большим опережением до в. м. т., что приводит к некоторому увеличению отрицательной работы (на линии сжатия) и снижению индикаторного к. п. д.  [c.225]

Высокочастотная неустойчивость обычно зависит только от характеристик камеры и параметров внутрикамерного процесса, так как она возникает в результате взаимосвязи между процессом горения и акустическими характеристиками камеры. Таким образом, на нее влияют и свойства компонентов топлива, и геометрические параметры камеры сгорания. К свойствам топлива, играющим важную роль, относятся те, что связывают динамическую реакцию процесса горения с возмущениями в камере сгорания. Эта реакция определяется чувствительным к давлению временем запаздывания [30], которое зависит от летучести и самовоспламеняемости компонентов топлива, степени распыления, давления в камере сгорания и соотношения компонентов. Конструкция камеры сгорания не только определяет характерные акустические частоты, но и оказывает значительное влияние на разность Ау скоростей газа и капель компонентов топлива, определяющую скорости испарения. Наиболее чувствительной к возникновению высокочастотной неустойчивости является зона, где величина Ау минимальна, т. е. пространство вблизи смесительной головки шириной в несколько сантиметров [9]. Типичные кривые скоростей испарения приведены на рис. 93.  [c.175]


Угол поворота коленчатого вала дизеля от начала впрыска топлива в цилиндр до прихода поршня в в. м. т, называется углом опережения подачи топлива Фо . Угол опережения подачи оказывает большое влияние на протекание рабочего процесса дизеля. При увеличении ф ц горение топлива начинается раньше, максимальное давление сгорания повышается, горение топлива заканчивается раньше и температура отработавших газов уменьшается. С уменьшением угла опережения подачи давление сгорания снижается, а температура отработавших газов повышается. На развернутых индикаторных диаграммах дизеля (рис. 25) можно видеть, что если во время сжатия начать впрыск топлива в точке /, то процесс горения и расширения будет протекать по сплошной линии а. Если топливо начать подавать в точке 2, то дальнейшее протекание процесса будет описываться штриховой линией б. Штриховая линия в соответствует расширению воздуха в цилиндре при отсутствии впрыска топлива. На этой же диаграмме показан угол задержки воспламенения топлива ф . Оптимальный угол опережения впрыска зависит от частоты вращения вала и нагрузки дизеля. Он устанавливается заводом опытным путем.  [c.67]

Второму типу колебаний свойственны частоты порядка от 50 до 300 Гц. Эта форма колебаний проявляет себя на огневых стендовых испытаниях двигателя и обусловлена главным образом обратным влиянием давления в камере на подачу. Если в камере по какой-то причине поднялось давление, то системой подачи это воспринимается как некоторое сопротивление. В результате снижается подача топлива, что, в свою очередь, с некоторым запозданием приведет к уменьшению давления в камере. Таким образом, возникает замкнутый контур взаимного влияния между камерой и подачей. А раз так, то система чревата возможным возникновением автоколебаний давление растет— расход падает, давление падает — расход растет. Решаю-ш,ее влияние на возникновение этого процесса оказывает запаздывание газообразования, т. е. время, протекающее от момента впрыска топлива до его превращения в продукты сгорания.  [c.143]

Под внутрикамерной неустойчивостью понимается такой вид колебаний низкой частоты, которые появляются в камере сгорания в результате влияния физических факторов (давление, температура) на процесс горения. Этот вид колебаний низкой частоты возникает вне зависимости от характеристик системы питания.  [c.156]

Двигателям внутреннего сгорания более, чем другим машинам, присуще взаимное влияние и связанность отдельных факторов. Например, скоростной режим двигателя не может однозначно определить скорости и характер перемещений даже деталей кривошипно-шатунного механизма, так как осевые перемещения и вращение поршневого пальца в расточках поршня и шатуна зависят от температуры поршня и гильзы. Не более четко определяет механические нагрузки на эти детали и совокупность главных показателей режимов работы двигателя частота вращения коленчатого вала и загрузка. Неравномерность подачи топлива и воздуха, процесс сгорания топлива и масла в цилиндрах значительно изменяют механические нагрузки не только на детали кривошипно-шатунной и гильзо-поршневой групп, но и на детали клапанного механизма, блока цилиндров, распределительные шестерни и др. Износ деталей при испытаниях двигателей в эксплуатации приводит к изменению влияния практически всех перечисленных факторов на работу деталей, что наряду с нестабильностью  [c.42]

В результате обработки индикаторных диаграмм дизеля 2Д100 было установлено, что при понижении частоты вращения коленчатого вала от 400 до 220 об/мин при работе на пяти топливных насосах температура воздуха в конце сжатия уменьшается примерно на 100° С (от 760 до 650 К), период задержки воспламенения увеличивается от 3,6 10 до 4,5 10 с, что хотя и ведет к повышению скорости нарастания давления dp/da, но на процесс сгорания положительного влияния не оказывает.  [c.254]


Знать и уметь оценить взаимосвязь между факторами, влияющими на экономичность, устойчивость и работоспособность двигателя, необходимо для того, чтобы облегчить его отработку. Случайные пульсации давления (нестационарное горение) обычно неблагоприятно отражаются на работе двигателя. Несколько случайных возмущений, наложившихся друг на друга, могут привести к неустойчивости. Колебания давления низкой частоты сопровождаются ухудшением стойкости стенки из-за уменьшения толщины пограничного слоя и более высоких коэффициентов теплопередачи. Нестационарное горение оказывает двойственное влияние на удельный импульс. Турбулизация, обусловленная волновыми процессами, улучшает смешение компонентов, т. е. улучшает полноту сгорания в камерах с малой приведенной длиной L. Поперечный поток, однако, смещая точки столкновения струй, может ухудшить вследствие этого степень распыления и понизить удельный импульс. Волновые процессы в камере интенсифицируют теплопередачу и уменьшают размер капель — в этом состоит их положительное влияние. Повышение начальной температуры компонентов топлива способствует повышению удельного импульса благодаря более высокой энтальпии, но иногда влияние температуры оказывается столь значительным, что получаемый эффект не может быть объяснен только энтальпией [68] возможно, сказывается улучшение распыливания за счет уменьшения поверхностного натяжения. Уменьшение коэффициента соотношения компонентов способствует повышению экономичности двигателя в случае внутрикамерного процесса, лимитируемого испарением горючего. В другом двигателе оно может вызвать снижение стойкости стенки из-за перетеканий, обусловленных дисбалансом количеств движения струй.  [c.179]

В целях проведения качественной оценки влияния магнитного поля на процессы ионизации в слабоионизованной плазме и экспериментального подтверждения рассмотренных методов были измерены концентрация электронов щ и эффективная частота соударений V в плазме факела продуктов сгорания метана в кислороде с введением добавки калия. Электропроводность плазмы (То определялась по формуле  [c.187]

ТУРБИНЫ паровые, ротационные двигатели с непрерывным рабочим процессом. По способу своего действия Т. паровая принадлежит. к классу ротационных двигателей и в отличие от двигателей поршневых (паровых машин и двигателей внутреннего сгорания) характеризуется основным признаком—непрерывностью рабочего процесса. При установившемся рабочем режиме по скорости и нагрузке в каждой определенной точке рабочих органов и полостей Т. все параметры процесса — скорости, статич. и динамич. усилия, давление,, темп-ра и теплосодержание—о с т а ю т с я постоянными по времени весь процесс является процессом непрерывным. Наоборот, в поршневой машине любого типа и назначения рабочий процесс представляет собою процесс периодический с непрестанно меняющимися элементами в каждой определенной, так сказать, координате рабочих органов процесс является пульсирующим, большей или меньшей частоты в зависимости от числа оборотов Всякий периодический процесс сопровождается появлением периодических, иногда меняющихся в весьма широких пределах, сопровождающих его динамич. эффектов. Этот неизбежный спутник всякого процесса поршневого-двигателя в. значительной мере усложняет-конструктивные формы и в конечном итоге-является отрицательным процессовым фактором, с которым особенно приходится считаться в современных быстроходных поршневых двигателях. В отличие от этого принцип непрерывности, характеризующий работу лопаточных двигателей, обладает ценным-, свойством—постоянством и устойчивостью рабочего процесса и отсутствием периодических, возмущающих усилий. Непрерывность процесса позволяет применять высокие скорости как рабочего тела, так и рабочих органов, превышающие во много раз соответственные скорости в поршневых двигателях и позволяю-пдие осуществлять нанвыгоднейшие кинематич. соотношения для получения возможно максимальной тепловой экономичности. В тепловом термодинамич. отношении ноирерывность процесса представляет выгоду в том отношении, что в большей море обеспечивает постоянство тепловых явлений, теплоотдачи, перехода одного вида энергии в другой, а вместе с этим, почти сводя колебания вышеуказанных явлений на-пет, улучшает условия работы машины в целом и позволяет надежнее учитывать влияние отдельных, постоянных для данной машины факторов. В Т. тепловая энергия преобразуется, вначале в промежуточную форму—и энергию кинетическую (истечения), а послед-  [c.111]

Зависимости изменения показателей работы дизеля ЮДЮО от уменьшения эффективных сечений выпускных окон втулки цилиндра (рис. 127) получены в результате расчета математической модели рабочего процесса поршневой части двигателя совместно с агрегатами воздухоснабжения при частоте вращения коленчатого вала 850 об/мин и постоянной цикловой подаче топлива, соответствующей номинальной мощности. Эффективные сечения выпускных окон оцениваются произведением где tiB — коэффициент истечения и Рв — сечение окон. Сечения окон уменьшаются в эксплуатации при отложении на них нагара, из-за чего уменьшается эффективная мощность двигателя Ne, индикаторный iii и эффективный г е к. п. д. Индикаторный к. п. д. уменьшается из-за понижения коэффициента избытка воздуха для сгорания а при уменьшении расхода воздуха через двигатель. На изменение механического т]м к. п. д. оказывают влияние затраты мощности на приводной центробежный компрессор, которая прямо пропорциональна расходу воздуха. Отложение нагара на выпускных окнах сопровождается увеличением температур отработавших газов перед турбиной U и температур характерной точки поршня t . Уменьшение коэффициента избытка воздуха а и рост температур т и t указывают на заметное увеличение тепловой напряженности работы цилиндропоршневой группы и деталей проточной части турбины турбокомпрессора. Частота вращения ротора турбины Пт понижается, и при уменьшении эффективного сечения окон свыше 20% работа центробежного компрессора приближается к границе помпажа. Этот режим характеризуется малым расходом воздуха и достаточно высокими степенями повышения давления, что приводит к срыву воздушного потока в проточной части компрессора, колебаниям давлений воздуха в ресивере и неустойчивой работе двигателя.  [c.215]



Смотреть страницы где упоминается термин Частота Влияние на процесс сгорания : [c.168]    [c.16]   
Автомобильные двигатели Издание 2 (1977) -- [ c.0 ]



ПОИСК



Влияние N-процессов

Процесс, сгорания

Частота Влияние на процесс сгорания в дизелях



© 2025 Mash-xxl.info Реклама на сайте