Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики камеры сгорания

Ухудшение основных характеристик камеры сгорания (воспламеняемость, устойчивость к срыву пламени и полнота сгорания) при давлениях ниже 1 ama вызывает необходимость детального изучения процесса горения топлива в этих условиях. С понижением давления в камере изменяется продолжительность протекания всех стадий процесса преобразования топлива в продукты сгорания распада струи и ее распыления на капли, смесеобразования, а также скорость промежуточных и основных реакций горения.  [c.39]


Автор указывает, что при концентрации 5—7% водяного пара в воздушном окислителе существенно ухудшаются пусковые характеристики камер сгорания, в связи с чем Ю. Н. Башкатов рекомендует применять мощные источники воспламенения.  [c.187]

Я. Шарп. Влияние рода топлива на характеристику камеры сгорания авиационного газотурбинного двигателя.— Вопросы ракетной техники, 1955, № 3.  [c.312]

Однако если случайные колебания давления совпадут с собственными частотами системы подачи или акустическими характеристиками камеры сгорания, то могут возникнуть периодические колебания с частотами, характерными для системы. Возникнув, они могут затухнуть, стабилизироваться или усилиться под влиянием процесса горения. Постоянное наличие колебаний внутрикамерного процесса обычно характеризуется как неустойчивое горение. Случайные пульсации могут налагаться на периодические колебания, как показано на рис. 92. Отсутствие периодических колебаний рассматривается как устойчивое горение.  [c.172]

Какие технические решения обеспечивают повышение экологических характеристик камеры сгорания ГТУ  [c.85]

Характеристики камеры сгорания ГТУ должны соответствовать требованиям ГОСТ 29283-92. В процессе эксплуатации КС обеспечивает полное устойчивое сжигание топлива (основного и резервного) на всех пусковых и рабочих режимах. Окружная неравномерность температурного поля в КС должна быть не более 10 % среднего значения балансовой температуры в каждой из пламенных труб, должны быть исключены вибрационное горение, срывы пламени при резких изменениях режима работы ГТУ.  [c.566]

Высокая надежность конструкции и стабильность характеристик камеры сгорания при заданном ресурсе ГТД.  [c.393]

Таблица 8.2 Основные геометрические характеристики камер сгорании ГТД Таблица 8.2 Основные геометрические характеристики камер сгорании ГТД
Они должны обеспечить дозированное распределение подачи воздуха по каналам при минимальных потерях давления и нечувствительность течения воздуха к изменению профилей скорости и положения головки жаровой трубы из-за возможных отклонений при работе двигателя на основных характеристиках камеры сгорания.  [c.400]


Подвод воздуха в жаровую трубу. За фронтовым устройством в стенках жаровой трубы выполняют несколько рядов основных отверстий для подвода воздуха. Число, размеры и расположение отверстий выбирают на основании предварительных расчетов геометрических характеристик камеры сгорания, а также имеющегося практического опыта, и уточняют в процессе конструк-404  [c.404]

ХАРАКТЕРИСТИКИ КАМЕР СГОРАНИЯ  [c.276]

Расчет геометрических характеристик камеры сгорания и сопла  [c.5]

Важнейшей характеристикой камеры сгорания является минимальное образование в ней при сжигании топлива ядовитых веществ — оксида углерода СО и оксидов азота NOJ . (х = 1 2).  [c.409]

Для определения ожидаемых параметров - энергетических характеристик камеры сгорания - надо вычислить или оценить каким-либо другим путем значения приведенных выше козффициентов, учитывающих влияние различных факторов на потери удельного импульса  [c.82]

Коэффициент должен учитывать потери удельного импульса, вы-зываемые завесой охлаждения. При расчете энергетических характеристик камеры сгорания по двухслойной модели потока продуктов сгорания, как сказано выше, расход на завесу охлаждения присоединяется к расходу в пристеночном слое и предполагается, что он полностью с ним перемешивается, снижая соответственно в нем соотношение компонентов.  [c.87]

Для искрового зажигания определяющими являются мощность искры, моторные свойства газового топлива, геометрические характеристики камеры сгорания. На основе теории теплового взрыва установлены условия воспламенения близлежащего к электродам свечи объема газа [5]  [c.14]

Методы организации движения воздушного заряда в период сжатия и аэродинамические характеристики камер сгорания более подробно рассмотрены в 3 гл. V.  [c.131]

Рис.5.1. Характеристики камеры сгорания Рис.5.1. Характеристики камеры сгорания
Важной характеристикой ДВС является отношение полного объема цилиндра к объему камеры сгорания, называемое степенью сжатия г  [c.170]

Задача 1. Исследовать влияние давления ра в камере сгорания на мощность турбины, компрессора и ГТУ, а также на термический и внутренний КПД ГТУ. Для этого необходимо установить на левой части стенда (рис. 10.9) определенные параметры и, меняя рг от значения р1 до 3 МПа с шагом, равным 0,2 МПа, записать характеристики ГТУ с приборов, расположенных на правой части стенда. Определить давления рз, при которых максимальны теоретическая мощность ГТУ, действительная мощность ГТУ, внутренний КПД. Изобразить исследуемые зависимости на графиках. Представить циклы, в которых мощность и КПД максимальны, в Т, -диаграмме. Для вычерчивания цикла энтропию рабочего тела необходимо рассчитывать по формуле  [c.257]

Величины 1 и А — основные химические характеристики применяемых топлив эти величины существенно зависят от весового отношения компонент топлива, поступающего в камеру сгорания двигателя, и от полноты сгорания ), обусловленной процессами испарения, смешения и, вообще говоря, свойствами кинетики химических реакций. В зависимости от состава топлива величину 1 можно рассчитать по опытным  [c.125]

Характеристики. Принципы конструирования. Камеры сгорания предназначены для создания газового потока заданной температуры за счет сжигания топлива. Схематично камера сгорания представляет  [c.257]

В качестве неорганических горючих были исследованы все элементы периодической системы Д. И. Менделеева. Наилучшими характеристиками из них обладают металлы (табл. 6.7), но при нормальных условиях они находятся в твердом состоянии, что затрудняет их подачу в ПЭ. Металлы подают в расплавленном состоянии, в виде порошков, суспензий или целиком размещают весь запас в камере сгорания. Другой проблемой является предотвращение оседания твердых и жидких продуктов реакции на элементах ПЭ. Третья проблема — уменьшение молекулярной массы продуктов сгорания, из-за которой возникают высокие температуры и большие потери на диссоциацию, например температура сгорания алюминия в кислороде достигает 5000 К, а потери на диссоциацию и испарение продуктов реакции доходят до 67%.  [c.104]


Изложены результаты теоретических и экспериметальных исследований определения акустических характеристик камер сгорания, газовых и жидкостных трактов, характеристик турбулентного пламени. Рассмотрено влияние различных факторов на устойчивость к колебаниям и возникновение неустойчивости течения в условиях теплоподвода при сверхкритическом давлении.  [c.115]

Дробление, испарение и сгорание капель, завершающиеся перемешиванием продуктов сгорания с воздухом и выравниванием полей температур и скоростей, должно произойти всего за несколько миллисекунд. В камерах недостаточной длины эти процессы не успевают завершиться. Непспнота сгорания и неравномерность полей перед входом в сопло снижают тяговые характеристики камеры сгорания. Если КУ2=100 м сек и степень турбулентности потока в камере сгорания 8=0,1, то пульс =гШ2 0Л 100=10 м1сек, т. е. пульсационная скорость, которой определяется скорость турбулентного распространения пламени, будет в десятки раз больше нормальной скорости, составляющей для углеводородов около 0,4 м/сек. Таким образом, сгорание топливовоздушной смеси и равномерность полей концентраций, температур и скоростей определяются интенсивностью турбулентности потока в камере, мелкостью распыла и относительным расположением форсунок и стабилизаторов. Увеличивая степень турбулентности, можно существенно сократить длину области горения.  [c.270]

Какие геометрические характеристики камеры сгорания и сопла необходимо saflaTb для расчета  [c.19]

Степень совершенства горения устанавливается газовым анализом. С помощью газового анализа продуктов сгорания можно определить их детальный состав, включая и непрореа-гировавшее горючее. На практике ограничиваются измерением количества остаточного кислорода для определения двух главных характеристик камер сгорания коэффициента избытка воздуха о и коэффициента полноты сгорания 2/- Коэффициент избытка воздуха в точке отбора пробы равен  [c.44]

Основные токсичные вещества, являющиеся продуктами неполного сгорания топлива — окись углерода, сажа, углеводороды и альдегиды. У двигателей с внешним смесеобразованием, и частности бензиновых двигателя.х, наибольшая доля вредных выбросов приходится на окись углерода, в то время как у двигателей с внутренним смесеобразованием (дизелей) — на сажу. Это объясняется существенным различием организации процессов смесеобразования и сгорания. Если у двигателя с внешним с.месеобразованием процесс горения в цилиндре можно рассматривать как горение гомогенной смеси, то в цилиндрах. тизеля осуществляется гетерогенное сгорание, качества которого зависит от характеристик впрыска топлива, формы камеры сгорания, интенсивности смесеобразования и т. д. При организации малотоксичного рабочего процесса в дизеле необходимо обеспечить полное сгорание топлива по всему объему ка.меры сюрания, а у двигате.теп с внешним смесеобразованием оптимальное соотношение топлива и воздуха в смеси.  [c.10]

Одной из достаточно важных характеристик закрученных течений являются наличие и размеры в поперечном направлении зоны обратных токов — рециркуляционной зоны, которая возникает в приосевой зоне для струйных течений с достаточно высокой интенсивностью закрутки S > 0,4. При этом возросший радиальный фадиент давления обусловливает заметный рост поперечных размеров струи и снижение осевой составляющей скорости по сравнению с прямоточной струей, что совместно с при-осевым тороидальным вихревым потоком рециркуляционной зоны ифает достаточно важную роль при решении прикладных задач в процессах горения и стабилизации пламени в камерах сгорания.  [c.25]

Малотоксичная камера сгорания авиационного двигателя ЛТ9Д разработана на базе конструкции серийной камеры сгорания турбореактивного двухконтурного двигателя 1Т9Д-7, имевшей неудовлетворительные эмиссионные характеристики. Обеспечение качества прбцесса смесеобразования в этих камерах достигается ор-  [c.32]

Наименее изученным до последнего времени оставалось аэро-акустическое взаимодействие, проявляющееся в том, что аэродинамические возмущения от постороннего источника могут изменить турбулентную структуру потока, а также и акустические возмущения, следствием чего являются результирующие акустические характеристики объекта. Так, шум компрессора, камеры сгорания и турбины или шум отрывного обтекания выходных стоек при определенных условиях может вызвать изменение аэ-роакустических характеристик реактивной струи,  [c.126]

Периферийный квазипотенци-альный вихрь, выполняя функцию тепловой защиты стенок камеры сгорания и других элементов конструкции, обеспечивает стабилизацию дугового разряда, офани-чивая рост дуги при увеличении рабочего тока [78, 149, 192]. Вихревая характеристика вихревого плазмотрона имеет восходящий участок, наличие которого улучшает технологические качества устройства, обеспечивая возможность гарантированной устойчивой работы дуги на восходящем участке при отсутствии в электрической цепи питания балластного сопротивления. Эго нетрудно показать, воспользовавшись анализом уравнения Кирм-офа, записанного для цепи электропитания плазмотрона [78]. Горение дуги будет устойчивым, если действительные части корней уравнения Кирхгофа отрицательны  [c.355]

Тонкость распыла жидкого топлива, его равномерность, а также степень испаренности, представляющая собой отношение испарившейся жидкости к полной распьшенной массе жидкого топлива, играют сушественную роль в процессе доводки высокоэффективных термохимических реакторов, камер сгорания и многих других топливосжигающих устройств [62,106]. Существующие экспериментальная техника и методики по опытному измерению отмеченных выше характеристик имеют недостатки, существенно снижающие достоверность экспериментального мате-  [c.383]


При сжигании топлива в движущемся воздухе в поток вводится дополнительная масса топлива при сгорании топлива в воздухе выделяется тепло и образуется газ — продукты горения. В детальных расчетах можно учесть появление этой дополнительной массы газа и связанное с этим изменение физико-механических характеристик газа. На практике эта масса и иэменение свойств часто относительно малы, так как массовая доля топлива по сравнению с массовой долей воздуха, участвующего в химической реакции, даже в случае стехиометрической смеси мала, например, отношение массы керосина к потребной для его сжигания массе воздуха равно Истехиом 1/15. в действительности в камерах сгорания воздушно-реактивных двигателей (ВРД) весовая доля воздуха значительно больше стехиометрической, отношение а имеет порядок 1,5—3%.  [c.98]

W — относительная скорость пара (газа) в рабочем колесе турбомашины, м/с скорость среды в теплообменном аппарате, м/с. д — координата, см, м степень сухости У — скоростная характеристика турбины у — координата прогиб, м степень влажности Z — число лопаток, ступеней, камер сгорания, ходов а — угол потока в абсолютном движении,. . . коэффициент линейного расширения, I/К .коэффициент теплоотдачи, Вт/(м -К) коэффициент избытка ноздуха Р — угол потока в относительном движении,. . . степень -пв и-жения давления в решетке различные коэффициенты у — угол,. . . °  [c.5]

Принятые величины, ( корости воздуха на входе в камеру сгорания Wb = 45 м/с вторичного воздуха Шз = 50 м/с, на выходе из за-вихрителя Шф=Ш21 газа в пламенной Т1)убе Шг=10 м/с, на выходе из камеры сгорания анвых = 50 м/с. Коэффициент избытка первичного воздуха o ix = = 2,0 фронтового устройства ф = 1,0. Количество пламенных труб г = 6. Объемная теплонапряженность пламенной трубы (7 = 180 Вт/(м -Па), КПД Т1к. с = 0,97. Геометрические характеристики коэффициент с= 0,025 толщина степки пламенной трубы =" 0,002 м, экрана Sg = 0,003 м зазоры между экраном и прочным корпусом наружный Д = 0,03 м, внутренний Ав = 0,03 м угол установки лопаток завихрителя ср = 60° угол раскрытия диффузора 7 2ф отношения = 0,49 lд/d = 1,0.  [c.265]

Размах деформаций, создаваемых в испытуемом образце (или во Зникающих в детали, например в кромке лопатки турбины), определяется жесткостью нагружения, величиной М = тах т]П И физическими свойствами материала (а, Е). При этом в одинаковых условиях нагружения (по жесткости, температурному циклу) величина размахов деформации может существенно различаться. Примером могут служить результаты иопы-тания трех сплавов (рис. 36), из которых изготовляют детал,п камер сгорания. Сплавы ХН60ВТ и ХН50ВМТЮБ одного класса некоторое преимущество последнего сплава объясняется его более высокими характеристиками при нижней температуре цикла (табл. 5). По расположению кривой термической уста-  [c.61]

Следует отметить, что впрыск топлива, используемый в двигателе PRO O, в некотором смысле обеспечивает создание слоистого заряда вблизи форсунки формируется область очень богатой смеси. Фронт пламени возникает в облаке капель топлива и затем распространяется в участки камеры сгорания с обедненной смесью. Однако двигатели с впрыском топлива, как правило, имеют худшие характеристики с точки зрения загрязнения среды, чем двухкамерные двигатели тех же размеров.  [c.65]


Смотреть страницы где упоминается термин Характеристики камеры сгорания : [c.179]    [c.54]    [c.3]    [c.174]    [c.16]    [c.255]    [c.99]    [c.315]   
Тепловое и атомные электростанции изд.3 (2003) -- [ c.384 ]



ПОИСК



Камера сгорания ВРД



© 2025 Mash-xxl.info Реклама на сайте