Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка давлением при взрыве

Сварка выпрямители 389, 390, 391 газы защитные 360, 361, 381 генераторы 359, 391, 393 зона термического влияния 381 полярность 359 трещины 380 Сварка давлением при взрыве 375  [c.510]

Представлены результаты исследований особенностей пластической деформации в зоне сварки различных (однородных и разнородных) металлов и сплавов, отличающихся по типу решетки и по величине энергии дефектов упаковки, соединения которых (Ti+ u AJ4- u Ст+Ni и др.) выполнены сваркой давлением при скоростях деформирования (П) от 10". С до 10 .С , что соответствует режимам сварки от диффузионной до сварки взрывом.  [c.158]


Новые способы сварки давлением холодная, взрывом и импульсом магнитной энергии созданы в 1950 - 1960 гг. Особенность этих способов обязательное предварительное удаление всех пленок с соединяемых поверхностей либо механической зачисткой или срезанием, как это делают при холодной сварке, либо путем отрыва их кумулятивной  [c.264]

Сварка взрывом - это способ сварки давлением, при котором для очистки, сближения, активации и соединения поверхностей используют энергию взрыва.  [c.269]

К отдельной группе следует отнести способы сварки давлением, при которых соединение завершается на стадии схватывания контактных поверхностей. В этой группе стадия объемного взаимодействия не получает развития вследствие низких температур (холодная сварка, сварка взрывом, магнитно-импульсная) или ввиду сравнительно высоких скоростей деформирования (сварка прокаткой, термокомпрессионная сварка). В этих условиях зона контакта, как правило, четко выражена. Способы этой группы сварки давлением наиболее пригодны для сварки разнородных материалов при опасности образования интерметаллидов в контакте.  [c.487]

Следует еще раз обратить внимание на то, что все рассмотренные в настоящем параграфе закономерности относятся, главным образом, к таким процессам сварки давлением, при которых с какой-либо точностью можно разделить этапы сближения, формирования физического контакта и собственно создания прочного сварного соединения. Речь, следовательно, может быть о диффузионной сварке в вакууме, о некоторых способах контактной сварки, о сварке трением. Но даже и для этих процессов общая длительность процесса сваривания не определяется суммой времени, необходимого иа сближение, формирование физического контакта и создание прочного соединения. Для сварки ударным давлением все эти отдельные этапы вообще не различимы. Различной оказывается и физическая картина сваривания при действии импульсных давлений (взрыв, электромагнитный удар) и при действии вибрационных давлений и колебаний. Эти особенности рассмотрены в дальнейшем.  [c.85]

Сварка взрывом — разновидность сварки давлением, при которой соединение осуществляется в результате вызванного взрывом соударения быстродвижущихся деталей.  [c.196]

Большинство технологических схем сварки взрывом основано на использовании направленного (кумулятивного) взрыва (рис. 5.43). Соединяемые поверхности двух заготовок и 3, в частности пластин, одна из которых неподвижна и служит основанием, располагают под углом а друг к другу на расстоянии ho- На заготовку S укладывают взрывчатое вещество 2 толщиной Я, а со стороны, находящейся над вершиной угла, устанавливают детонатор I. Сваривают на жесткой опоре. Давление, возникающее при взрыве, сообщает импульс расположенной под зарядом пластине. Детонация взрывчатого вещества с выделением газов и теплоты происходит с большой скоростью (несколько тысяч метров в секунду).  [c.267]


К сварке давлением без нагрева относится холодная сварка, сварка взрывом, магнитно-импульсная сварка. Для этих способов характерно высокое давление на детали в зоне соединения, в несколько раз превышающее предел текучести и даже предел прочности свариваемого металла при комнатной температуре, что обеспечивает совместное пластическое деформирование соединяемых поверхностей.  [c.6]

Сварка давлением незначительно изменяет химический состав, структуру и свойства металла. С ее помощью могут быть получены сварные соединения с такими же свойствами, как у основного металла без дополнительной обработки после сварки. Это одно из основных преимуществ сварки давлением перед сваркой плавлением. Но большинство способ ов сварки давлением (за исключением контактной сварки) требует создания особых условий (например, вакуума при диффузионной сварке, обеспечения безопасности работ при сварке взрывом), либо они применимы только для небольшой группы конструкций деталей. Поэтому сварка плавлением применяется чаще.  [c.7]

Среди известных способов сварки давлением только при диффузионной сварке и сварке взрывом е приближается к минимально возможной. Это обусловлено контактированием с критическими скоростями, при которых благодаря диффузионным процессам разупрочнение в контакте преобладает перед его деформационным упрочнением. Для всех остальных способов сварки давлением фактические скорости контактирования намного превышают критические. Следовательно, при этих способах нельзя получить соединения с минимальной остаточной деформацией. Например, чтобы при холодной сварке получить соединение с минимальной осадкой, скорость контактирования при комнатной температуре должна быть настолько медленной, что для завершения сварки потребуются годы.  [c.257]

Саморегулирование дуги 141 Сборка деталей под сварку 171, 376 Свариваемость 35, 364 Сварка (определение) 5 Сварка в лодочку 14, 15, 121 Сварка в защитных газах 8, 152 Сварка в контролируемой атмосфере 153 Сварка взрывом 269 Стадии образования соединения при сварке давлением 255 Стационарные машины для термической резки 299 Стенды сварочные 149 Стол сварщика ПО Сварка давлением 6, 255 Сварка лежачим электродом 122 Сварка на проход 117, 119 Сварка наклонным электродом 123 Сварка плавлением 7 Сварка по слою флюса 197 Сварка погружённой дугой 200 Сварка пучком электродов 122 Сварка сжатой дугой 8, 223  [c.393]

ВОЛНЫ остаются продукты взрыва, давление при этом составляет 10—20 Ша. За счет этого части верхней детали, расположенной в зоне действия продуктов взрыва, сообщается ускорение в направлении к неподвижной детали. Силовое воздействие на участки верхней пластины происходит последовательно по мере перемещения фронта детонации, и в любой промежуточный момент времени установившегося процесса сварки положение свариваемых деталей будет таким, как показано на рис. 25.2, б. Та часть верхней пластины, где детонация ВВ еще не произошла, находится в исходном положении параллельно нижней, а где прошел фронт детонации, пластины будут уже сварены (участок между точками А и В). В итоге верхняя пластина получит в процессе сварки двойной изгиб, причем точка В непрерывно и с большой скоростью переместится вправо. При параллельном положении пластин до сварки скорость перемещения точки В (ь ) равна скорости детонации (Пд).  [c.489]

Сварка с применением ТМ- и Т-процессов происходит при введении в соединяемые заготовки механической энергии, вызывающей их совместную пластическую деформацию. При этом тепловая энергия может вводиться, а может и не вводиться в соединение. Чаще всего она необходима для облегчения процесса его пластического деформирования (явление термопластичности). Такие процессы носят название сварки давлением. К ним относят контактную, холодную и диффузионную сварку, сварку трением, взрывом и т.д.  [c.9]


Сварка взрывом — это процесс соединения материалов, находящихся в твердой фазе, за счет пластической деформации соударяющихся под углом поверхностей заготовок при воздействии импульса давления, создаваемого взрывом. Пластическая деформация в зоне соединения приводит к образованию физического контакта и активации контактных поверхностей. Особенностью сварки взрывом является  [c.421]

В процессе сварки давлением собранные детали сдавливают усилием Р (рис. 179). При сварке давлением соединение заготовок достигается путем совместной пластической деформации соединяемых поверхностей. Пластическая деформация осуществляется за счет приложения внешнего усилия при этом материал в зоне соединения, как правило, нагревают с целью повышения пластичности. В процессе деформации происходит смятие неровностей, разрушение окисных пленок, в результате чего обеспечивается плотный контакт между заготовками. К способам сварки давлением относятся контактная, диффузионная, холодная и прессовая, трением, ультразвуком, взрывом и др.  [c.388]

Взрывная сварка. Сущность способа заключается в использовании для сварки металлов энергии взрыва, осуществляемой применением взрывчатки. На соединяемые поверхности мгновенно действует образующаяся при взрыве упругая, ударная волна с давлением на металл до 70 тыс. атмосфер, под действием которой происходит прочное соединение свариваемых частей. Поверхность в месте сварки получается волнистой, что увеличивает прочность соединения. Сварка ведется без подогрева свариваемых частей. Наиболее прочное соединение получается в условиях вакуума, устраняющего наличие воздушной прослойки между свариваемыми частями. Этим способом сваривают и разнородные металлы, например, медь со сталью, никель со сталью, медь с алюминием, титан с ниобием и другие трудно поддающиеся обычной сварке металлы. При испытании прочности сварки на срез разрушение основного металла происходит раньше, чем разрушение шва. Этот вид сварки проводится пока в лабораторных условиях.  [c.319]

Расположение пластины под углом приводит к тому, что при взрыве пластина приобретает скорость до 2000 м сек, которая раскладывается на касательную и нормальную составляющие по отношению к поверхности нижней пластины. Действие нормальной составляющей скорости приводит к возникновению больших давлений в точке соударения пластин, что сближает их до расстояний, необходимых для возникновения между соединяемыми слоями металлических связей, а также увеличивает площадь соединения. Действие касательной составляющей вызывает тангенциальное перемещение метаемой пластины по неподвижной, что вызывает прочную сварку слоев.  [c.202]

Параметрами технологического процесса сварки давлением являются давление (деформация), температура, время, среда (состав газовой фазы), скорость взаимного перемещения (трение). Иногда отдельные параметры настолько взаимосвязаны, что их нельзя самостоятельно регулировать (например, при сварке взрывом, когда в результате быстрой пластической деформации металл в зоне сварки нагревается, но температура в ней не задается и не контролируется).  [c.316]

Взрывоопасность обусловливается применением при сварке и резке кислорода, защитных газов, горючих газов и жидкостей, использованием газогенераторов, баллонов со сжатыми газами и т. д. Взрывоопасны химические соединения ацетилена с медью, серебром и ртутью. Опасность представляют собой обратные удары в газовой сети при работе с горелками и резаками низкого давления. При ремонте резервуаров и другой тары для хранения горючих жидкостей необходимы специальные меры для предотвращения взрывов.  [c.758]

Несоблюдение требований безопасности труда при г азовой сварке может вызвать тяжелые последствия взрывы, загорания, ожоги и отравления газами. Баллоны должны быть защищены от ударов и нагрева. Во время работы баллоны должны быть закреплены в вертикальном положении на расстоянии не менее 5 м от сварочной горелки или открытого огня и 1 м от отопительных приборов. От солнца баллоны защищаются брезентом. Во избежание взрыва вентиль открывается плавно. Кислородные баллоны могут взорваться в момент открывания, если на штуцере баллона или на клапане редуктора имеется масло. В пустых баллонах надо сохранить остаточное давление. При воспламенении или  [c.115]

При выделении газа непосредственно через поверхность капель без образования пузырьков создаются реактивные силы, действующие на поверхность капель. Эти силы препятствуют отрыву капель и обусловливают их подвижность на конце электрода, увеличивающуюся с увеличением содержания углерода в электроде. Слой щлака на каплях при сварке толстопокрытыми электродами затрудняет выделение газа непосредственно через поверхность и способствует этим уменьшению подвижности капель. Большую роль играют пузырьки газа внутри капель. Давление газа в пузырьках, наряду с силой тяжести, способствует отрыву капли. При взрывах пузырьков капли электродного металла приобретают большую скорость и отбрасываются к детали.  [c.134]

Интенсивность оплавления и его устойчивость могут оказывать существенное влияние на качество сварного соединения. Объясняется это те.м, что при взрыве перемычек частицы металла, нагретые до высокой температуры, энергично окисляются, понижая содержание кислорода в зазоре между оплавляемыми торцами. Повышенное давление в этом зазоре, вызываемое следующими друг за другом взрывами, затрудняет доступ в зазор воздуха. Кроме того, при сварке сталей выгорает углерод, в связи с чем содержание кислорода в зазоре дополнительно понижается, а атмосфера, омывающая торцы, обогащается окисью углерода (СО) и углекислым газом (СОд). Например, газ, взятый из зоны сварки при устойчивом оплавлении труб из малоуглеродистой стали, содержал около 2 —4 /о кислорода, примерно 1 /(, СО и 2 /о СОз- Такая атмосфера может существенно понизить интенсивность окисления оплавляемых торцов, облегчая получение качественного соединения. При неустойчивом оплавлении содержание кислорода в зазоре между торцами возрастает, и повышается окислительная способность омывающей торцы атмосферы. Окислительная способность газовой среды в зазоре между торцами уменьшается с увеличением скорости оплавления (при условии устойчивого протекания процесса оплавления).  [c.81]


При взрыве соединяемые поверхности очищаются, нагреваются и, смещаясь друг относительно друга, свариваются, образуя в зависимости от режима волнообразные или плоские соединения. Ударное действие давления упрочняет металл зоны сварки. Форма слоя взрывчатого вещества определяет направление потока газов, а его размещение — вид соединения.  [c.121]

Соединение частей происходит при направленном взрыве заряда взрывчатого вещества, вызывающем соударение этих частей, в результате чего в поверхностных слоях этих частей металл течет подобно жидкости, диффундирует и сваривается. Таким образом, сварка взрывом в принципе аналогична холодной сварке необходимое для сварки давление здесь обеспечивается за счет взрывной волны.  [c.277]

Все приведенные выше формулы, относящиеся к деформационным напряжениям н их концентрациям, справедливы только для статических нагрузок или нагрузок, прикладываемых с малыми скоростями. Для ударных же давлений все общепринятые показатели механических свойств металла недостоверны. При каждом способе сварки давлением деформационные картины в контакте различны. При сварке взрывом момент образования контакта и момент его сваривания по времени неразличимы. Поведение металла в контакте при холодной сварке и трением — это течение металлических слоев под давлением, а не стабильное соприкосновение поверхностей. Для этих способов сварки представления  [c.22]

Трубопроводы для ацетилена подразделяются на трубопроводы низкого давления (до 0,01 МПа), среднего (до 0,15 МПа) и высокого (свыше 0,15 МПа) давления. Все они изготавливаются из стальных бесшовных труб, соединяемых между собой сваркой. Внутренний диаметр ацетиленопровода для среднего давления не должен превышать 50 мм, для высокого давления — не более 20 мм ввиду возможной детонации при взрыве ацетилена. При большом расходе газа прокладывают два и более параллельных трубопровода. Диаметр ацетиленопровода для низкого давления не ограничен.  [c.94]

Сварку давлением без подогрева выполняют, как правило, с высокоинтенсивным силовым воздействием. К этим видам относятся сварка взрывом, холодная, магнитно-импульсная и др. Ультразвуковая сварка относится к сварке без подогрева при низкоинтенсивном внешнем силовом воздействии. Параметры этих видов сварки (давление, температура нагрева, время нагрева, удельное давление, интенсивность приложения давления и температуры) зависят от свойств соединяемых материалов, состояния их поверхностей, конструктивных особенностей и т. д.  [c.114]

Вт/ем, а при лазерной еще на порядок выше (для сравнения сварочная д га имеет минимальную плотность энергии 10 Вт/см ). Ис-пользч ют смелее также электрошлаковую сварку, а среди способов с применением давления — сварку токами высокой частоты, сварку трением, сварку прокаткой и взрывом.  [c.22]

Известны две разновидности сварки давлением без нагрева (сварка взрывом, импульсом магнитной энергии, холодная сварка) и с нагревом (кузнечная, ультразвуковая, трением, диффузионная, высокочастотная, газопрессовая и контактная сварка). Природа образования соединения во всех случаях сварки как с нагревом, так и без него одна это результат взаимодействия между активированными атомами соединяемых поверхностей. Различают три стадии процесса образования соединения при сварке давлением. На первой стадии образуется физический контакт, происходит активация поверхностей, которые сближаются ка параметр кристаллической решетки, преодолевая энергетический барьер, но сохраняют устойчивое состояние, не сливаясь. На второй с т а д и и образуется химическое соединение активированных поверхностей, происходит сварка - сближение атомов на расстояние межатомарного взаимодействия. Ширина границы раздела становится соизмеримой с шириной межзеренной границы, прочность соединения становится соизмеримой с прочностью основного металла. Н а третьей стадии происходит диффузионный обмен масс через объединенную поверхность соединения. При этом вновь полученная поверхность раздела размывается или расчленяется продуктами взаимодействия.  [c.255]

Эти трудности в меньшей степени сказываются при сварке разнородных металлов давлением (термодиффузионная сварка в вакууме, холодная сварка, сварка ультразвуком, трением и взрывом) или плавлением, если используются сварочные источники с высокой концентрацией тепловой энергии — электронно-лучевая сварка в вакууме, сварка лазером. При сварке разнород-  [c.514]

Механизм коррозионных разрушений сварных соединений определяется приложением энергии в месте соединенияз тепловой энергии при сварке термического класса (дуговой, газовой, электрошлаковой, электроннолучевой, лазерной, плазменно-лучевой) давления и тепловой энергии при сварке термомеханического класса (контактной, диффузионной, дугопрессовой, газопрессовой и др.) механической энергии и давления при сварке механического класса (холодной, взрывом, магнитно-импульсной, ультразвуковой, трением). При этом происходят необратимые физико-химические изменения металла в зоне соединения вследствие процессов плавления и кристаллизации полимерные превращения распад пересыщенных твердых растворов старение, рекристаллизация усложнение напряженного состояния в связи с возникновением собственных напряжений и деформаций.  [c.494]

Сварка взрывом характеризуется развитием высоких температур, появляющихся на контактных поверхностях соударений об разцов при ударе. Это проявляется как в повышении общей тем пературы пластин после сварки, так и в процессах отдыха, а в некоторых случаях и рекристаллизации околошовных зон наиболее деформировайных участков меди, серебра, а иногда и стали. Во всех описанных выше случаях сварка происходила при механическом взаимном проникновении и перемешивании движущихся поверхностных слоев под действием ударных давлений.  [c.36]

Сварка давлением может быть без предварительного нагрева ie Ta соединения (холодная сварка, сварка взрывом), когда вводится только механическая энергия с предварительным нагревом контактная, диффузионная, газопрессовая, когда вводится термомеханическая энергия. Предварительный нагрев до пластического остояния или до оплавления применяют для металлов и сплавов, эбладающих повышенным сопротивлением пластическим деформациям в холодном состоянии, что затрудняет их совместное деформирование, так как требует больших удельных давлений. Нагрев металла при сварке давлением осуществляется электрическим током в месте соприкосновения (контакта) деталей (контактная сварка) за счет электромагнитной или высокочастотной индукции (индукционная сварка) за счет теплоты, выделяемой при сгорании газов газопрессовая сварка) за счет механической работы трения между гоединяемыми частями (сварка трением и ультразвуком),  [c.437]

Для соединения тугоплавких металлов и их сплавов преимущественно применяют сварку плавлением дуговую в инертных газах (в камерах и со струйной защитой), под бескислородным флюсом (для титана), в вакууме электроннолучевую, лазером. Для некоторЬ1х изделий применяют следующие способы сварки давлением диффузионную в вакууме и защитных газах, взрывом, контактную. По свариваемости и технологии сварки тугоплавкие металлы можно разделить на две группы. К первой группе относятся титан, цирконий, ниобий, ванадий, тантал, ко второй — молибден, вольфрам. Металлы и сплавы первой группы обладают хорошей стойкостью к образованию горячих трещин, но склонны к образованию холодных трещин. Склонность этих металлов к холодным трещинам связана с водородом, который охрупчивает металл в результате гидридного превращения при содержании его выше предельной растворимости. Кроме того, охрупчивание металла происходит также при насыщении кислородом, азотом, углеродом и теплофизическом воздействии сварки, вызывающем перегрев, укрупнение зерна и выпадение хрупких фаз.  [c.500]


При газовой сварке и резке возможность взрывов и пожаров обусловлена также применением таких вещ,еств, как кислород, ацетилен, карбид кальция, керосин, бензин и другие. Кислород активно поддерживает горение и может вызвать самовоспламенение жиров и масел. Ацетилен является взрывоопасным газом, который взрывается при повышении давления выше 2 атм и температуры выше ЗОО , а также в смеси с воздухом при содержании ацетилена в ней от 2,8 до 66%. При взрыве ацетилено-воздушной смеси наибольшее давление образовавшихся паров и газов в И—13 раз превышает начальное давление газа в сосуде (генераторе или газосборнике). С медью, серебром и ртутью ацетилен образует взрывчатые вещества, так называемые аиетилениды. При повышении температуры выше 120° ацети-лениды взрываются от ударов и толчков. Взрывоопасность карбида кальция связана с тем, что при воздействии на него воды или влаги, имеющейся в воздухе, образуется ацетилен, что и может повести к взрыву и пожару. В смеси с воздухом взрывоопасен и природный газ. При содержании в смеси с воздухом от 6 до 12% метана такая гмесь является взрывоопасной. Также взрывоопасны смеси воздуха с парами бензина и керосина.  [c.619]

Сущность взрывной сварки заключается в использовании для сварки металлов энергии взрыва, осущестз ляемой применением взрывчатки. На соединяемые поверхности. мгновенно действует образующаяся при взрыве упругая ударная волна с высоким давлением, под действием которой происходит прочное соединение свариваемых частей.  [c.303]

К сварке взрывом примыкают способы магнитноимпульсной и электрогидравли-ческой сварки, использующие импульсы электромагнитного поля. Этими способами соединяют сравнительно мелкие детали. Диффузионная сварка производится достаточно продолжительным нагревом собранных деталей под давлением в вакууме, без расплавления металла. При сварке трением разогрев стыка осуществляется быстрым вращением деталей, соприкасающихся торцами под некоторым давлением. При электролитической сварке детали, опущенные в водный раствор электролита, разогреваются нод действием проходящего между ними тока.  [c.10]

Сварка взрыв ом-вид сварки давлением. Сущность сварки взрывом состоит в том, что при получении нахлесточ-ного соединения одной (тонкой) детали с другой (толстой), находящихся с определенным зазором между собой, на внешнюю поверхность тонкого листа наносят определенное количество взрыйчатого вещества, при зажигании которого образуется детонационная волна, приводящая к ударному прижиму тонкого листа к тол-  [c.14]

Белая нетравящаяся полоска всегда получаетея на поверхностях, обработанных электрической искрой. Однако она фиксируется и при полном отсутствии электрических разрядов, например при скоростной механической обработке металла. Мало того, аналогичные слои обнаруживаются на поршневых кольцах двигателей внутреннего сгорания, на трущихся поверхностях автомобильных рессор. Зафиксированы белые нетравящиеся полоски и на поверхностях высокоуглеродистых пластин, сваренных друг с другом посредством мощного ударного давления, осуществленного взрывом. Обнаруживаются белые нетравящиеся полоски и при газопрессовой сварке.  [c.125]

Внутри цехов и помещений для газовой сварки и резки аце-тиленопровод можно прокладывать параллельно с кислородо-проводом по одной стене или по общим колоннам, но на отдельных опорах. Ацетиленовый трубопровод должен окрашиваться в белый цвет, а на стенках канала должны наноситься предупреждающие надписи. Ацетиленопровод должен быть надежно заземлен. Каналы для ацетиленопроводов должны снабжаться вытяжными трубами. В целях предупреждения возникновения и распространения детонационной волны при взрыве ацетилена диаметр труб для ацетиленопроводов среднего давления не должен превышать 50 мм, а высокого давления 15 мм. В случае необходимости иметь большее сечение трубопровода, если это требуется по расходу газа, следует применять прокладку нескольких параллельных трубопроводов.  [c.104]

Во 2-й пол. 20 в. с помощью статич. Д. в. получены важные научные результаты, мн. из к-рых нашли широкое практич. применение. Синтезированы алмаз и алмазоподобные модификации нитрида бора (р 4ГПа, и i 1100 °С), получены плотные крист, модификации важных породообразующих минералов (кремнезёма, оливина), зафиксирован переход диэлектриков в проводящее и сверхпроводящее состояние, установлены диаграммы состояний для мн. одно- и многокомпонентных систем. Д. в. используются при механич. обработке металлов и при полимеризации. Ди-нампч. Д. в., возникающие при взрыве, используют для получения при сильном сжатии плотных модификаций, сохраняющихся при норм, условиях, для сварки металлов, для исследования изменения плотности в-в и фазовых переходов в них, в особенности при таких высоких давлениях и темп-рах, какие ещё недоступны статич. методам.  [c.141]

Давление в прессово-механических сварочных процессах может осуществляться как при помощи мощных пневмогидравли-ческих устройств, так и за счет энергии взрыва (сварка взрывом).  [c.26]


Смотреть страницы где упоминается термин Сварка давлением при взрыве : [c.222]    [c.389]    [c.160]    [c.268]    [c.117]   
Металловедение и технология металлов (1988) -- [ c.375 ]



ПОИСК



Взрыв

Сварка взрывом

Сварка давлением

Сварка давлением при взрыве газопрессовая

Сварка давлением при взрыве диффузионная в вакууме

Сварка давлением при взрыве индукционная высокочастотная

Сварка давлением при взрыве кузнечно-горновая

Сварка давлением при взрыве при трении

Сварка давлением при взрыве холодная

Сварка давлением при взрыве электрическая контактная



© 2025 Mash-xxl.info Реклама на сайте