Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь сварка с медью

Искровой импульс применяется для сварки различных металлов между собой алюминия со сталью, серебра с медью, меди с алюминием, немагнитной или специальной стали с обычной сталью или цветными металлами и т. д. Возможность строгой дозировки энергии, посылаемой к месту точечной сварки, позволяет осуществить целый ряд технологических операций при сварке весьма тонких изделий из вольфрама, нержавеющих сталей и сплавов алюминия, а также при приварке тонких изделий к толстым.  [c.69]


Перспективно применение ультразвуковой сварки для соединения металла в разнородных сочетаниях алюминия с нержавеющей сталью, алюминия с медью и т. д.  [c.480]

Практическое применение этого способа сварки показывает, что он обеспечивает получение надежных соединений металлокерамических пластинок с дерновками из обычных сталей. Успешно свариваются быстрорежущие и жаропрочные стали, алюминий с медью, никелем и т. п.  [c.293]

Для сварки трубопроводов из медноникелевого сплава МНЖ-5, содержащего 4,4— —5% N1 1—1,5% Ре остальное Си Для сварки трубопроводов из медноникелевого сплава МНЮ, содержащего около 10% N1 1% Ре 0.8% Мп остальное Си Для сварки малоответственных конструкций из медного проката или стали СТЗ с медью  [c.215]

Металлографический анализ соединения стали 20 с медью М1, полученного диффузионной сваркой в вакууме, показал, что поверхность соединения определяется лишь различием в структуре. В этом случае как по микроструктуре, так и при помощи микрорентгеноспектрального анализа не удается обнаружить  [c.37]

Сварка стали с медью и ее сплавами. В равновесном состоянии при комнатной температуре медь растворяется в а — Fe в количестве до 0,3%, а железо в меди в количестве до 0,2%.  [c.384]

Основные параметры сварки трением скорость относительного перемещения свариваемых поверхностей, продолжительность на- рева, удельное усилие, пластическая деформация, т. е. осадка. Требуемый для сварки нагрев обусловлен скоростью вращения и осевым усилием. Для получения качественного соединения в конце процесса необходимо быстрое прекращение движения и приложение повышенного давления. Параметры режима сварки трением зависят от свойств свариваемого металла, площади сечения и конфигурации изделия. Сваркой трением соединяют однородные и разнородные металлы и сплавы с различными свойствами, например медь со сталью, алюминий с титаном и др. На рис. 5.4] показаны основные типы соединений, выполняемых сваркой трением. Соединение получают с достаточно высокими механическими свойствами. В про-  [c.222]

Другой метод борьбы с газовой коррозией состоит в использовании защитной атмосферы. Газовая среда не должна содержать окислителей в контакте со сталью и восстановителей в контакте с медью. В качестве защитной атмосферы при термообработке и сварке применяют инертные газы азот и аргон. Разогрев стали осуществляют в атмосфере, содержащей азот, водород и окись углерода. Сварка алюминиево-магниевых и титановых деталей должна производиться в атмосфере аргона.  [c.14]


Свариваемые металлы. Стыковой сваркой (в том числе и ударной) свариваются между собой почти все металлы и сплавы, а именно а) конструкционные, углеродистые и специальные стали во всех возможных сочетаниях, как, например, углеродистая с быстрорежущей, быстрорежущая с нержавеющей, хромоникелевая с малоуглеродистой б) углеродистые и специальные стали с ковким чугуном, всеми сортами латуней и бронз, монель-металлом, медью, никелем, сплавами высокого электрического сопротивления, немагнитными сплавами, вольфрамом, молибденом, оловом, свинцом, сурьмой и всеми благородными металлами в) алюминий с алюминиевыми сплавами, медью и большинством сортов латуней и бронз г) вольфрам с медью и медными сплавами, а также сплавами высокого электрического сопротивления д) никель с медью, латунями и бронзами.  [c.356]

Для более эффективного использования энергетических характеристик СО 2-лазера свариваемые металлы покрывают тонкой пленкой хорошо поглощающего материала, например графита. В [168] приведены результаты сварки материалов с большим коэффициентом отражения при нанесении на них тонкой пленки других металлов, хорошо поглощающих лазерное излучение например, была произведена сварка пластин меди толщиной 0,48 мм, покрытых пленкой чистого никеля толщиной 0,04 мм (рис. 88, а, б). Видно, что плавление происходит по всей глубине свариваемого шва и при этом требуется лазерной энергии в три-четыре раза меньше, чем при сваривании пластин из чистой меди. На рис. 88, в показаны результаты сваривания цилиндров из нержавеющей стали.  [c.137]

В чем же сущность этой технологии Напомним, что плазма — это ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Ионизация газа может произойти, например, при его нагреве до высокой температуры, в результате чего молекулы распадаются на составляющие их автоматы, которые затем превращаются в ионы. Плаз менная обработка (резка, нанесение покрытий, наплавка, сварка) осуществляется плазмой, генерируемой дуговыми или высокочастотными плазмотронами. Эффект достигается как тепловым, так и механическим действием плазмы (бомбардировкой изделия частицами плазмы, движущимися с очень высокой скоростью). Плазменную резку успешно применяют при обработке хромоникелевых и других легированных сталей, а также меди, алюминия и др5 гих металлов, не поддающихся кислородной резке. Большая производительность и высокое качество плазменной резки не только дают возможность эффективно использовать этот прогрессивный процесс на автоматических линиях, но и позволяют исключить ряд до-  [c.55]

Пайкой можно соединять различные металлы в любом сочетании (сталь, чугун, алюминий, медь и т. п.). Процесс осуществляется с меньшим нагревом деталей, чем при сварке, вследствие чего снижается опасность коробления. При паянии практически мало или совсем не изменяются свойства металла. Простота процесса и несложность оборудования позволяют широко применять пайку в ремонтных работах (устранение течи в радиаторах, водяных, масляных и топливных трубопроводах заделка трещин, небольших пробоин в топливных и масляных баках и т. п.).  [c.201]

Способ позволяет получать соединения разнородных материалов, например алюминия с медью, меди со сталью и т.п. Ультразвуковую сварку применяют в приборостроении, радиоэлектронике, авиационной промышленности. Особенно широкое применение она находит при сварке пластмасс.  [c.267]

Диффузионная сварка позволяет сваривать практически все известные конструкционные материалы. Хорошо свариваются разнородные материалы, в том числе и с сильно различающимися теплофизическими свойствами, не растворяющиеся друг в друге, образующие при других способах сварки хрупкие химические соединения. Можно сваривать, например, алюминий со сталью и титаном, сталь с чугуном, медь с молибденом. Свариваются металлы с неметаллами сталь с графитом, стекло с медью и т.д.  [c.275]

Газовая сварка сопровождается нагревом широкой зоны, большими деформациями металла, существенными изменениями его структуры. Производительность газовой сварки низкая, автоматизировать ее сложно. Поэтому она применяется для сварки, в основном, деталей малой толщины в монтажных условиях, при сварке стальных труб малого диаметра, а также в ремонтных работах. С помощью газовой сварки можно сваривать стали, алюминиевые сплавы, медь и ее сплавы, чугун.  [c.473]


Высокие температура плавления меди и теплопроводность (почти в 6 раз больше, чем у стали) требуют применения мощных высококонцентрированных источников теплоты при сварке плавлением, режимов сварки с высокой погонной энергией и во многих случаях предварительного и сопутствующего подогрева.  [c.455]

Обычно сварку выполняют вольфрамовым электродом в аргоне и по слою флюса. Для улучшения процесса сварки на медь после ее очистки необходимо наносить слой покрытия, который активирует поверхность более тугоплавкого металла, улучшает смачиваемость поверхности меди алюминием. Наилучшим является цинковое покрытие толщиной 50. .. 60 мкм, наносимое гальваническим методом. Технология сварки алюминия с медью такая же, как и алюминия со сталью, т.е. дугу смещают на более теплопроводный металл, в данном случае на медь, на 0,5. .. 0,6 толщины свариваемого металла (табл. 13.4).  [c.509]

Сварка стали с медью и ее сплавами.  [c.518]

Технологическими приемами удается устранить вредные последствия специфических свойств меди. Так, ведение сварки с возможно большей скоростью способствует уменьшению продолжительности контакта пламени с жидким металлом. Для компенсации больших теплопотерь из-за повышенной теплоемкости и теплопроводности меди рекомендуется использовать предварительный или сопутствующий подогрев кромок металла и более мощное пламя. Обычно наконечник горелки выбирают на 1—2 номера больше, чем при сварке стали. Для уменьшения вредного воздействия кислорода и ацетилена на металл шва используется нормальное пламя. Разрушению оксидных прослоек после сварки способствует проковка металла шва в горячем состоянии.  [c.114]

Сварной шов при сварке с преимущественным расплавлением стали. В мартенситной структуре расположены светлые точечные и полосчатые включения твердого раствора железа в меди. Микротвердость 600—700 кгс/мм , 200 1, (9) табл. 2.4.  [c.110]

Алюминиевые сплавы характеризуются высокой удельной прочностью, способностью сопротивляться инерционным и динамическим нагрузкам, хорошей технологичностью. Временное сопротивление алюминиевых сплавов достигает 500 — 700 МПа при плотности не более 2,850 г/см . По удельной прочности некоторые алюминиевые сплавы а Црд) — 23 км) приближаются или соответствуют высокопрочным сталям а 1 рд) — = 27 км). Большинство алюминиевых сплавов имеют хорошую коррозионную стойкость (за исключением сплавов с медью), высокие теплопроводность и электрическую проводимость, хорошие технологические свойства (обрабатываются давлением, свариваются точечной сваркой, а специальные — сваркой плавлением, в основном хорошо обрабатываются резанием).  [c.359]

Титан можно соединять сваркой плавлением с цирконием, ниобием, танталом, молибденом и ванадием, с к-рыми он образует твердые растворы. Сварка титана с др. металлами требует применения промежуточных покрытий, вставок или прокладок. Напр., при дуговой сварке титана с медью применяются вставки из тантала, при точечной и шовной контактной сварке титана со сталями — прокладки из ванадия в виде фольги и т. д.  [c.155]

ВНИИ разработал другую конструкцию сверла, у которой отверстия на перьях получаются при помощи вальцевания и завивки. На цилиндрической заготовке сверлятся два отверстия, в которые вставляют прутки из сплава, обладающего более низкой температурой плавления по сравнению с температурой закалки быстрорежущей стали (фосфористое железо, медь и др.) или засыпают тонким, сухим песком. После стыковой сварки рабочей части из быстрорежущей стали с хвостовиком из малоуглеродистой стали производится вальцевание и завивка сверла. При наличии заполнителя отверстия не заполняются металлом и изменяют только свою форму (в виде треугольника). При нагреве под закалку заполнитель расплавляется и вытекает или высыпается из отверстия. Сверла с такими отверстиями дают хорошие результаты в отношении подвода охлаждающей жидкости в зону резания, что способствует повышению стойкости их в несколько раз по сравнению со стандартными сверлами.  [c.376]

Жесткие режимы характеризуются повышенной производительностью в связи с уменьшением времени сварки, увеличением усилия сжатия и концентрированным нагревом. Эти режимы применяются а) для сварки нержавеющих сталей, так как при сварке на мягких режимах возможно выпадение карбидов в околошовной зоне, приводящие к потере коррозионной стойкости б) для сварки алюминия, меди и медных сплавов, так как они обладают высокой теплопроводностью и для них недопустим перегрев околошовной зоны в) для сварки ультратонкого металла толщиной до 0,1 мм.  [c.394]

Процесс диффузионной сварки в вакууме открыт, исследован и разработан для промышленного применения профессором Н. Ф. Казаковым. Его успешно применяют прежде всего для соединения материалов, которые обычными методами сварки соединять трудно или невозможно, например, сталь с чугуном, титаном, ниобием, вольфрамом, металлокерамикой, платину с титаном, керамику с коваром, титаном, медью, золото с бронзой, серебро с нержавеющей сталью, бронзы с различными металлами, металлы с кварцем, стеклом, графитом, кермета и т. п. Соединяют этим методом жаропрочные сплавы, тугоплавкие и активные металлы, специальные керамики, ме-  [c.404]

Одним из достоинств ультразвуковой сварки является возможность соединения заготовок различной толщины, например тонких листов и фольги с деталями большой толщины. Другое существенное преимущество сварки ультразвуком заключается в хорошей свариваемости этим методом металлов в разнородных сочетаниях, например алюминия с медью, цинком и оловом, меди со сталью, никеля с вольфрамом, тугоплавких металлов со сталью и металлов с керамическими материалами.  [c.414]


Холодная сварка давлением. Такая сварка (рис. 98,6) осуществляется за счет сближения молекул металла в твердом состоянии при глубокой пластической деформации его в месте сварки. Этим способом соединяют детали из достаточно пластичных материалов алюминия, меди, свинца, цинка, титана, никеля и др., а также разнородные металлы, например алюминий с медью или свинцом, медь с никелем, латунью, нержавеющей сталью и др.  [c.328]

Соединение сваркопайкой разнородных материалов (меди со сталью, титана с медью, алюминия с медью, ниобия со сталью и др.) осуществляют с помощью оборудования общего назначения для сварки [2, 14, 17].  [c.400]

Ультразвуковой сваркой можно получать точечные и шовные соединения внахлестку, а также соединения по замкнутому контуру. При сварке по контуру, например, по кольцу, в волновод вставляют конический штифт, имеющий форму трубки. При равномерном под-жатии заготовок к свариваемому штифту получают герметичное соединение по всему контуру (рис. 5.43). Ультразвуковой сваркой можно гваривать заготовки толщиной до 1 мм и ультратонкие заготовки Т0Л1ЦИ1ЮЙ до 0,001 мм, а также приваривать тонкие листы и фольгу к заготовкам неограниченной толщины. Снижение требований к качеству свариваемых поверхностей позволяет сваривать плакированные и оксидированные поверхности и металлические изделия, покрытые различными изоляционными пленками. Этим способом можно сваривать металлы в однородных и разнородных сочетаниях, например алюминий с медью, медь со сталью и т. п. Ультразвуковым способом сваривают и пластмассы, однако в отличие от сварки металлов к заготовкам подводятся поперечные ультразвуковые колебания.  [c.224]

Для защиты зоны сварки стали применяться инертные газы — аргон и гелий. Был разработан процесс аргоно-дуговой сварки и соответствующее сварочное оборудование для автоматической и механизированной сварки плавящимся и неплавящим-ся электродами. Для сварки чистой меди оказалось возможным применять азот высокой чистоты, так как медь не дает с ним соединений, устойчивых в условиях дуговой сварки.  [c.379]

При сварке стали со сталью необходимо удельное давление 2,0 кГ.мм и температура 1000°С, мади с медью —0,7 кГ/мм и 850°С, стали с медью О,Б кГ1мм и 900 С.  [c.432]

Для обеспечения пластических свойств металла шва и околошов-ной зоны на уровне свойств основного металла следует выбирать режимы, обеспечивающие получение швов повышенного сечения, применять двухдуговую сварку или производить предварительный подогрев металла до температуры 150...200 °С. Среднеуглеродистые и среднелегированные стали рекомендуется сваривать под флюсом при толщине свариваемого металла не менее 4 мм. Сварку можно вести как на переменном, так и на постоянном токе. Диаметр электродной проволоки выбирают 2...5 мм. При сварке с одной стороны не допускается использование медных и медно-флюсовых подкладок из-за возможности попадания в шов меди и образования вследствие этого горячих трещин. Для увеличения сопротивляемости сварных швов горячим трещинам, а также повышения пластичности и ударной вязкости металла шва используют основные флюсы, такие как АН-26, АН-20, 48-ОФ-10, уменьшающие содержание серы и окисных включений в металле шва. Во избежание пористости и наводоражи-вания швов флюсы перед сваркой необходимо прокаливать при температуре 300...350 °С в течение 2...3 ч, чтобы их влажность не превышала 0,1 %. Конструкционные среднеуглеродистые и среднелегированные стали под флюсом сваривают, как правило, без подогрева. Только в случае сварки жестких узлов и узлов из сталей ЗОХГСА и ЗОХГСНА при большой толщине изделий применяют подогрев до температуры 250...300 °С. После сварки во всех случаях необходим общий отпуск при температуре 600 °С или местный послесварочный отпуск при температуре 300 ° С для предупреждения образования холодных трещин.  [c.150]

Затруднения при сварке и наплавке меди на сталь связаны с ее физико-химическими свойствами, высоким сродством меди к кислороду, низкой температурой плавления меди, значительным поглощением жидкой медью газов, различными величинами коэффициентов теплопроводности, линейного расширения и т.д. Одним из основных возможных дефектов при сварке следует считать образование в стали под слоем меди трещин, заполненных медью или ее сплавами (рис. 13.11, а). Указанное явление объясняют расклинивающим действием жидкой меди, проникающей в микронадрывы в стали по границам зерен при одновременном действии термических напряжений растяжения.  [c.506]

Переход сталь (слева) — сварной шов при сварке с иреимуш,ествен-ным расплавлением меди (луч направлен на медь). Сталь в зоне термического влияния претерпела мартенситпое превращение. Металл шва состоит из твердого раствора железа в меди (светлого) и твердого раствора меди в железе (темного). 200 I, (9) табл. 2.4.  [c.110]

Тантал хорошо поддается многим видам сварки, кроме ацетиленоводородной. Однако сварку проводят в вакууме или инертной среде. Чаще всего применяю аргокодугсвую сварку плавлением, а также сварку электронным лучом. Пластичность шва в первом случае получается несколько ниже пластичности основного металла, но тем не менее она достаточно высока. При электронно-лучевой сварке поглощение швом газов почти полностью устраняется. Тантал хорошо сваривается с нержавеющей сталью, никеле )ыми сплавами, медью, титаном, цирконием. Возможна также сварка с вольфрамом и молибденом.  [c.552]

При прямой переработке древесных погонов на германских заводах в последнее время стали вместо меди и серебра применять хромоникелемолибденовую сталь типа Х18Н12М2Т (ЭИ 171). Следует заметить, что эта сталь оказывается коррозионностойкой не на всех стадиях технологического процесса. В частности, она не может удовлетворительно противостоять действию горячей сырой уксусной кислоты, в составе которой всегда находится масляная, пропионовая и муравьиная кислоты, повышающие интенсивность коррозии. В США хромонике-лемолибденовой сталью типа Х18Н12М2Т пользуются при изготовлении аппаратов последней стадии дистилляции — холодильников, конденсаторов и приемников чистой уксусной кислоты. Аппаратуру, соприкасающуюся с неочищенной уксусной кислотой, например колонны и конденсаторы, изготовляют из чистой меди или кремнистой бронзы, содержащей 1,5—3% кремния и 0,25—1,0% марганца. На шведских заводах предпочитают в этом случае хромоникелемолибденовую сталь, содержащую 26% хрома, 4% никеля и 1,5% молибдена. Исследования показали, что сталь такого состава обладает наибольшей стойкостью по отношению к погонам сырой уксусной кислоты. Механические свойства этой стали близки к свойствам обычной хромоникелемолибденовой стали типа Х18Н12М2Т. Сварку шведской стали предпочтительно производить по методу аргоновой дуги, но допускается и обычная дуговая сварка с применением в качестве электродов проволоки того же состава.  [c.62]

При сварке оплавлением ток включают до соприкосновения с деталями, а затем детали начинают сближать. Когда величина воздушного зазора достигнет определенного значения, начинается искрообразование и оплавление кромок. Для получения сварного соединения ток включают и производят осадку при давлении 250—500 кГ1см . Сварку оплавлением применяют для соединения цепей, рельсов, труб, инструментов, штампованных листа деталей, а также разнородных материалов, например али — меди, стали — латуни, алюминия — меди, углеродистой гали и т. д. Достоинства способа — высокая производительность и высокое качество сварного соединения, а недостаток — потери металла на угар.  [c.325]



Смотреть страницы где упоминается термин Сталь сварка с медью : [c.343]    [c.385]    [c.387]    [c.25]    [c.113]    [c.122]    [c.127]    [c.133]    [c.227]    [c.10]    [c.62]   
Справочник по специальным работам (1962) -- [ c.6 , c.6 , c.617 ]



ПОИСК



Медиана

Медь Сварка

Медь сталь

Сварка меди и ее сплавов со сталью

Сварка меди со сталью 189, 190 - Прием

Сварка меди со сталью Гирш)

Сталь Сварка

Флюсы для сварки углеродистых сталей, чугуна, бронзы, латуни и меди



© 2025 Mash-xxl.info Реклама на сайте