Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плиты, характеристика

Марка плит Характеристика Конструкция плит Виды обработки шероховатости по ГОСТ  [c.36]

Плиты должны иметь прямоугольную форму и ровно обрезанные края. Разность диагоналей по длине не более 20 м.м. В изломе плиты должны быть однородной структуры, без пустот и посторонних включений. Влажность — не выше 1% от массы плиты. Характеристика плит дана в табл. 2-11.  [c.80]

Снятая экономическая характеристика позволяет быстро и точно определить раскрой на прямоугольные заготовки (карточки), наивыгоднейшие размеры плит для изготовления матрицы в пуансонах  [c.347]


Снятая экономическая характеристика позволяет быстро и точно определить раскрой на прямоугольные заготовки (карточки), наивыгоднейшие размеры плит для изготовления матриц и пуансонов, наивыгоднейшую ширину полосы-ленты и положение детали в полосе при лимитированном виде раскроя (см, рис. 254, г, д, ё), а также с учетом заранее заданного направления волокон.  [c.299]

Рассмотрим теперь изотропную пластину, усиленную сеткой ребер, часто поставленных как в одном, так и в другом направлениях (рис. 6.35). Такая система проявляет в общем случае различные жесткостные характеристики в направлениях X и у и называется конструктивно-ортотропной плитой. Ее расчет можно приближенно выполнить как расчет условной ортотропной пластины с жесткостями >1, Да и Ds, входящими в уравнения (6.69). Пусть для ребер, параллельных оси х, жесткость на изгиб EJi, на кручение GJ pi, а  [c.181]

При импульсивном нагружении в плите распространяются волны напряжений нагрузки, разгрузки и отраженные волны образуются области возмущений, в которых материал плиты находится в напряженном состоянии, которое характеризуется тензором напряжений (ст) частицы среды в движении (вектор скорости V), плотность материала р. Этим характеристикам состояния плиты в области возмущений соответствует тензор кинетических напряжений (Т), принимаемый в дальнейшем за основную искомую величину. Зная (Т) и пользуясь формулами, приведенными в 2 гл. 2, находим тензор напряжений (а), вектор скорости частиц V и плотность материала р в области возмущений.  [c.252]

Таким образом, в зоне областей возмущений первых двух периодов процесса распространения волн напряжений тензор кинетических напряжений (Т) определен как основная характеристика состояния среды плиты. В этой зоне распространение волн напряжений проходит по толщине плиты от загруженной ее поверхности до тыльной и в обратном направлении. Размеры зоны определяются размерами области приложения нагрузки и толщиной плиты к, т. е. в направлении координатной линии г имеем (/ " р + к) от начала координат О.  [c.265]

По ряду точек кривой давления, взятых по второму графику, пользуясь первым графиком, определить подачу насоса Q и построить зависимость Q = f l). По Qn = f l) построить характеристику скорости движения плиты v = f(t).  [c.120]

Для определения основных механических характеристик пластмасс проводят испытания на растяжение, сжатие, статический изгиб, твердость и на ударный изгиб. Образцы для испытаний могут быть изготовлены механической обработкой из плит, листов, прессованием, литьем под давлением и другими способами формования. Способ и режим изготовления образцов устанавливаются техническими нормами на пластмассы.  [c.158]


При получении композиционных материалов на песчаном грунте листы часто имеют коробление и шероховатую поверхность. При деформировании композиционного листа на таком основании из-за значительного прогиба в материале появляются большие касательные напряжения вследствие относительного сдвига металла матрицы и волокна, обладающих разными пластичными характеристиками. Величина этих напряжений может превышать прочность связи волокна с матрицей, что иногда приводит к образованию непроваров, снижающих прочность композиции. Однако металлическая плита в качестве основания имеет и свои недостатки, так как в этом случае отраженная волна, интенсивность которой составляет более 20% интенсивности падающей ударной волны, создает на границах раздела между слоями матрицы значительные растягивающие напряжения. Это может приводить к образованию локальных дефектов, также снижающих прочность композиции. Более благоприятные условия сварки, обеспечивающие высокую прочность соединения, создаются при использовании в качестве основания плиты из материала, имеющего достаточно высокую жесткость в сочетании со сравнительно низким акустическим сопротивлением.  [c.161]

Поскольку в конструкциях резервуаров для хранения жидкого топлива используют толстые плиты, часто для увеличения производительности применяют сварку с высокой погонной энергией. Если погонная энергия при сварке слишком велика, то в зоне термического влияния сварных соединений имеет место склонность к образованию микропористости. Считается, что причиной микропористости является локальное оплавление границ зерен микропоры располагаются параллельно плоскости прокатки. Хотя микропоры вследствие их случайного распределения и малого размера (<1 мм в длину) вряд ли существенно влияют на величину разрушающего напряжения и на акустические характеристики, для улучшения условий ультразвукового контроля необходимо уменьшать микропористость.  [c.128]

Рис. I. Влияние макроструктуры плиты на микропористость и характеристики ультразвукового контроля сварных соединений сплава 5083-0 (толщина плиты 40 мм) а — место расположения микропористости (погонная энергия 90 кДж/см. количество проходов — по одному с каждой стороны) среднее количество микропор в сечении ОД при мелкозернистой структуре и 5,7 при крупнозернистой б — положение контрольного отражателя диаметром 1 мм частота 5 МГц, угол ввода ультразвукового луча в — акустические характеристики сплава с мелкозернистой структурой г — то же, крупнозернистой структурой 1 — максимальный уровень шумов 2 — сигнал от контрольного отражателя 3 — 20 /о амплитуды сигнала от контрольного отражателя Рис. I. Влияние макроструктуры плиты на микропористость и характеристики ультразвукового <a href="/info/54622">контроля сварных соединений</a> сплава 5083-0 (толщина плиты 40 мм) а — место расположения микропористости (<a href="/info/339744">погонная энергия</a> 90 кДж/см. количество проходов — по одному с каждой стороны) среднее количество микропор в сечении ОД при мелкозернистой структуре и 5,7 при крупнозернистой б — положение контрольного отражателя диаметром 1 мм частота 5 МГц, <a href="/info/409019">угол ввода</a> ультразвукового луча в — <a href="/info/248893">акустические характеристики</a> сплава с мелкозернистой структурой г — то же, крупнозернистой структурой 1 — максимальный <a href="/info/39037">уровень шумов</a> 2 — сигнал от контрольного отражателя 3 — 20 /о <a href="/info/220103">амплитуды сигнала</a> от контрольного отражателя
Влияние ширины образца на остаточную прочность образцов из плит со сквозным надрезом может быть выражено уравнением (1). На основании этой зависимости предложен метод оценки остаточной прочности и установлен стандартный уровень значений этой характеристики.  [c.136]

Чувствительность к надрезу сварных соединений, выполненных с присадкой проволоки сплава 5356, значительно ниже, чем у основного материала прессованных профилей и плит сплава 7005 (см. табл. 1), а удельная энергия распространения трещины для сварных соединений находится в пределах значений этой характеристики для основного материала плит. Интервал этих значений одинаково данными для сварных соединений плит сплава 5083, выполненных с присадкой сплава 5183, хотя прочность сварных соединений этого сплава гораздо ниже [12]. Данные по свойствам сварных соединений сплава 7005 при 4 К пока отсутствуют. Предполагается, что сварные соединения, выполненные с присадкой сплава 5039, будут иметь более высокую чувствительность к надрезу, чем при использовании присадки сплава 5356.  [c.174]


Дополнительную информацию об относительных характеристиках разрушения отливок из указанных выше сплавов можно получить при построении графиков зависимости отношения а /оо,2 от Oo.s при различных температурах, как это показано на рис. 5. На рисунке показана также область значений этого отношения для различных полуфабрикатов из деформируемых алюминиевых сплавов (плит, прессованных полуфабрикатов, поковок).  [c.201]

В стекловолокнитах ярче, чем в других, проявляется влияние технологии на прочностные характеристики. Существуют разновидности стекловолокнитов ориентированные и неориентированные, рубленого и непрерывного волокна. Наибольшей прочностью обладают изделия из ориентированного стеклопластика непрерывного волокна. Примером такого материала может служить СВАМ (стекловолокнистый анизотропный материал), из которого изготавливаются плиты, листы, трубы и другие изделия, имеющие форму тел вращения или близкую к ним. СВАМ, что видно из самого названия материала, анизотропен — вдоль стекловолокон прочностные свойства его намного выше, чем поперек.  [c.353]

Рис. 102, Связь потенциала ф с характеристиками КР плиты сплава 2219-Т87 [135] обозначения те же, что на рис. 101. Рис. 102, Связь потенциала ф с характеристиками КР плиты сплава 2219-Т87 [135] обозначения те же, что на рис. 101.
Повышенное сопротивление расслаивающей коррозии листов плит и прессованных полуфабрикатов сплавов 7075-Т76, 7178-Т76 уже было отмечено. Состояние Т76 может существенно повысить служебные характеристики полуфабриката в тех областях применения, где другие защитные меры не достаточны. В настоящее время разработаны новые высокопрочные материалы плакировок 7011 [192, 195—197] и 7008 [4] для высокопрочных сплавов серии 7000. Новые плакировочные сплавы защищают сплавы серии 7000, содержащие медь, электрохимически. В термообработанном состоянии они приобретают механические свойства, близкие к свойствам основного металла, в противоположность обычной не подвер-  [c.278]

Вышеуказанные положения относятся к усредненной четко выраженной текстуре плит и листового материала и не дают полного описания характеристик микроструктуры. В работе [243] отмечено, что при горячей обработке в области высоких температур в сплаве Ti — 6 А1 — 4V образуются пластинчатые структуры, в которых группы пластин а-фазы общей ориентации концентрируются в локализованной зоне. Такие структуры без сомнения относятся к структурам с колониями а-фазы, о которых упоминалось выше. Как было показано, такие структуры не оказывают ярко выраженного влияния на КР. Однако осторожность должна быть проявлена в случае изгиба деталей большого сечения с пластинчатой структурой. Возможно, что подобная ситуация может возникать в случае алюминиевых сплавов, в которых высотное направление наиболее опасное. Можно ожидать, что для титановых сплавов важным фактором является боковая протяженность пластин структуры а-фазы, хотя это не было исследовано подробно. Существование таких полос в структуре обусловливает, вероятно, области полосчатости, наблюдаемые на многих поверхностях разрушения (см. рис. 109, а). Если это справедливо, то небольшая боковая протяженность полосчатости указывает, что полосы имеют подобный небольшой боковой размер, поэтому такие структуры могут быть более точно определены как двояковыпуклые, а не пластинчатые.  [c.423]

Динамические характеристики амортизаторов зависят не только от частоты, но и от статических нагрузок. Экспериментальная установка для определения динамических характеристик амортизаторов в условиях статического поджатия (рис. 41) состояла из рамы 1, внутрь которой вставляются два последовательно соединенных амортизатора 2. Между наружными плитами амортизаторов и рамой размещаются пьезодатчики силы 6. Возбуждение системы осуществляется через балку 3, середина которой закрепляется между внутренними плитами амортизаторов. Электродинамические вибраторы 5 подсоединяются к концам балки через датчики силы 4, которые служат для синхронизации возбуждения вибраторов по величине и фазе.  [c.92]

Резонансная частота преобразователя усилий составляет обычно 40—50 кГц. Поэтому частотная характеристика его чувствительности линейна в звуковом диапазоне частот. Пьезоэлектрический модуль пластин титаната бария зависит от величины действующего на них статического усилия (рис. IX. 10). Поэтому в процессе калибровки желательно воздействовать на преобразователь статическим усилием, равным действующему на него при установке в болтовом соединении усилию затягивания. Для этого груз крепится к вибрирующей плите шпилькой, а жесткость шпильки выбирается гораздо меньшей жесткости преобразователя, так что все инерционное усилие груза передается на преобразователь. Если величины статических сил затягивания преобразователя при калибровке и в процессе измерений не равны, следует вносить поправку, используя зависимость, представленную на рис. IX.10.  [c.411]

При путевом управлении непосредственно на станке устанавливают гидроблок управления (обычно на торце боковой станины) и путевой гидрораспределитель (на направляющей плите силового стола). Технические характеристики гидроблоков управления приведены в табл. 5. их основные размеры — на рис. 8, а гидравлические схемы совместно с путевым гидрораспределителем — на рис. 9. Гидроблоки изготовляют с электромагнитами постоянного и переменного тока.  [c.151]

Испытательный пресс оборудован специальным кондуктором, центрирующим образец (по геометрическому центру) иа активной опорной плите. Последняя перед испытанием автоматически, по сигналу с линейного дифференциального трансформатора, устанавливается в исходное положение в уровень с рольгангом. Испытания с заранее установленной скоростью производятся после нажатия оператором кнопки Пуск . Результат испытания в виде разрушающей нагрузки и плотности подается в вычислительную машину, где обрабатывается (по программе) вместе с сигналами первого поста, после чего поступает на цифропечатающее устройство и в долговременную память на магнитную ленту. В сертификате протокола печатают все исходные данные и вычисленные результаты, средние значения плотности и предела прочности по серии испытаний, а также статистические характеристики.  [c.69]


Изгибные прессы снабжены приспособлениями для испытания на трех-и четырехточечный изгиб, плитами для испытаний на сжатие, устройствами для испытаний на растяжение цементных восьмерок и другими приспособлениями, предписываемыми стандартами. Системы управления и измерения на изгибных прессах такие же, как на прессах для испытания на сжатие. Часто одну и ту же систему управления используют для двух прессов (на сжатие и на изгиб). Основные технические характеристики выпускаемых изгибных прессов приведены в табл. 3.  [c.145]

Решение задачи о напряженно-деформированном состоянии тонких плит (пластин) в общем случае связано с интегрированием системы нелинейных дифференциальных уравнений равновесия (16.40), в которых усилия и моменты для линейно-упругих материалов с характеристиками деформации связаны соотношениями (16.26). Де- рмации, в свою очередь, выражаются через перемещения по формулам (16.14) в декартовых осях и по формулам (16.15) в полярных оординатах. Эта задача представляет большие математические трудности, и поэтому целесообразно классифицировать задачи, с тем чтобы выделить из них те случаи, которые дают возможность применительно к разным конкретным условиям получить более простые уравнения, поддающиеся решению относительно простыми средст-<вами.  [c.389]

По размерам получаемых при добыче кусков уголь классифицируют следующим образом плита (П), крупный (К), орех (О), мелкий (М), efvie4K0 (С), штыб (Ш) и рядовой (Р). Размер кусков угля от класса К к классу Ш уменьшается от 50—100 до 6—13 мм. В классе Ш куски угля мельче 6 мм, а в классе Р размер кусков неограничен и может составлять 0—200 (300) мм. В табл. 3 приведена характеристика твердого топлива некоторых месторождений.  [c.27]

Шастер и Рид [154] использовали с несколько другими целями метод ударных плит для образования в боралюминии ударных волн с давлением до 76 кбар и длительностью воздействия менее 2 мкс. Скорость ударных плит увеличивалась до появления разрушения. Было установлено возрастание стенени разрушения волокон при увеличении скорости и определена скорость, вызывающая разрушение алюминия и расслоение двух видов бороалюми-ния. Скорость разрушения для композиционного материала, изготовленного плазменным напылением и диффузионной сваркой, в 3 раза превышает скорость разрушения для алюминиевых образцов, в то время как соответствующая характеристика для плазменно-наНыленного паяного материала оказалась несколько меньше скорости разрушения для алюминия. Этот эффект связан с различным характером расположения волокон, образующимся в процессе изготовления материала. Как показано на рис. 15, в, г, в образцах, изготовленных диффузионной сваркой, волокна не соприкасаются, что способствует затуханию волны в результате интенсивного рассеяния. В паяных образцах (рис. 15, а, б) волокна соприкасаются, причем точки контакта располагаются по направлению волны. Таким образом, волна распространяется по волокнам бора, обладает меньшим рассеянием, и в результате скорость разрушения оказывается того же порядка, что и для алюминия.  [c.306]

Принципиально свойства слоистого композита можно охарактеризовать с позиций трех масштабных уровней во-первых, методами микромеханики, используя характеристики составляющих композит компонент во-вторых, методами макромеханики, аналогичными теории слоистых плит, используя характеристики слоя, определенные экспериментально в-третьих, непосредственно из испытания слоистого композита.  [c.104]

Значения удельной энергии распространения трещины q для сварных соединений сплава 5083, выполненных в нижнем и в вертикальном положениях, почти одинаковы при комнатной и низких температурах и сравнимы со значениями этой характеристики для основного материала плит сплава 5083-0. Значение q у сварных соединений спла ва АМгб при комнатной температуре значительно ниже, чем у сварных соединений сплава 5083 при 77 К значения этой характеристики составляют около 60 % от значений при комнатной температуре. Снижение этих значений не отразилось на величинах отношения прочности на раздир к пределу текучести или на величинах вязкости разрушения.  [c.114]

В качестве исследуемого материала использовали плиты толщиной 35, 35, 50 и 80 мм из сплава 5083-0, которые были изготовлены по обычной серийной технологии и полностью соответствовали требованиям стандартов ASTM и NV (Det NorsKe Veritas). Испытания с определением характеристик разрушения были проведены, в основном, на плитах толщиной 25 мм. Сравнительные испытания плит толщиной 35, 50 и 80 мм проводили с целью оценки влияния толщины плиты на величину остаточной прочности.  [c.128]

Предварительные данные по характеристикам разрушения сварных соединений плит сплава Х7005-Т6351, выполненных е присадкой сплава 5356, показывают, что они имеют такую же вязкость, как и основной металл. Это видно из сравнения данных табл. 3 и табл. 1 и результатов, описанных в предыдущем разделе.  [c.174]

Рис. 101. Связь потенциала <р с характеристиками КР плиты сплава 2219 Тв51 [135] цифры в кружках — количество испытанных образцов — продолжительность старения при Рис. 101. Связь потенциала <р с характеристиками КР плиты сплава 2219 Тв51 [135] цифры в кружках — количество <a href="/info/28746">испытанных образцов</a> — продолжительность старения при
Рис. 118. Влияние перестариванпя на прочностные характеристики в долевом направлении вязкость разрушения и сопротивление КР сплава g 7079 (толщина плиты 25 мм, ориентация трещины ВД), Xj,.p измерялся при скорости роста трещины 1,4 10 см/с [44а] Рис. 118. Влияние перестариванпя на <a href="/info/46891">прочностные характеристики</a> в долевом направлении <a href="/info/23892">вязкость разрушения</a> и сопротивление КР сплава g 7079 (толщина плиты 25 мм, ориентация трещины ВД), Xj,.p измерялся при <a href="/info/189120">скорости роста</a> трещины 1,4 10 см/с [44а]
Прочность и сопротивление КР различных состояний сплавов серии 7000 обычно проверяются путем измерения твердости и электропроводности [147]. Гладкие образцы для испытаний на растяжение, кольцевые образцы или образцы другого типа, вырезанные в высотном направлении, проходят 30-сут испытания в условиях переменного погружения в раствор 3,57о Na l при нагруз-се 75% от гарантированного предела текучести. Сопротивление КР по скорости роста коррозионной трещины (см. рис. 114) для со стояния Т73 (так же как и для состояний Т76 и Т736) должно проверяться на образцах ДКБ за то же или меньщее время. Другой метод быстрой проверки состояния 7075 исследуется. Он базируется на измерении потенциалов в растворах метиловый спирт— четыреххлористый углерод [148]. Такие испытания уже разрабо таны для плит и листов сплавов 7178-Т76 и 7075-Т76 и имеют перспективу в качестве количественного контроля при установлении характеристик КР и расслаивающей коррозии [148]. Процедура испытаний и растворы похожи на те, которые использовались для сплава 2219 (состояния Т851, Т87). Время испытаний также менее 1 ч. Результаты испытаний показаны на рис. 119 и 120. Следует отметить, что сплавы, показывающие в растворе СНзОН/ /сев потенциалы меньшие —400 мВ по отношению к н. к. э., всег-  [c.262]

В программе фирмы Boeiпg целью контракта было получение минимального значения предела текучести 500 МПа, минимального порогового уровня напряжений в высотном направлении 310 МПа, высоких характеристик разрушения и усталостных свойств. При этом чувствительность к закалке должна обеспечивать неизменными высокие свойства на плитах и штамповках. Номинальный состав рекомендуемого сплава 21 представлен в табл. 10 и на рис. 122. По существу сплав 21 является сплавом 7075-7178 с низким содержанием меди, с цирконием и марганцем вместо хрома. Низкое содержание меди и замещение хрома цирконием и марганцем должны свести к минимуму чувствительность к закалке. Рекомендуемые предельные содержания компонентов сплава были, % 5,9—6,9 2п, 2,2—2,9 Mg, 0,7—1,5 Си, 0,10— —0,25 2г, 0,05—0,15 Мп, 0,05 (мах.) Сг, 0,20 (мах.) Ре, 0,20 (мах.) 81, 0,10 (мах.) Т1.  [c.267]


На рис. 124 сопоставлены прочностные характеристики толстостенных сплавов Б виде плит с типичными значениями предела текучести в поперечном направлении для плит серийных сплавов 7079-Т651, 7075-Т651 и 7075-Т7351. Предел текучести рассматривается в зависимости от скорости закалки. Стрелки на рис. 124, показывающие скорости охлаждения для плит различной толщины, закаленных в воде при четырех температурах, наглядно де-  [c.271]

Выбор материалов для листов и плит чаще всего определяется такими факторами, как усталостная выносливость и вязкость разрушения, а не сопротивлением КР и расслаивающей коррозии. Тем не менее, если результаты практического использования показывают, что защитных мер против расслаивающей коррозии сплавов серии 7000 недостаточно, то можно рекомендовать новые состояния Т76 для сплавов 7178 и 7075 и состояние Т761 для нового сплава Х7475. В тех областях применения, где сплавы серии 7000 используют обычно в плакированном состоянии для улучшения прочностных характеристик и увеличения усталостной выносливости, можно рекомендовать новые материалы для плакировок 7011 и 7008 с более высокими прочностными характеристиками. Кроме того, значительное увеличение вязкости разрушения может быть достигнуто при использовании сплава Х7475, плакированного сплавом 7008 или без плакировки.  [c.299]


Смотреть страницы где упоминается термин Плиты, характеристика : [c.371]    [c.163]    [c.293]    [c.142]    [c.50]    [c.54]    [c.113]    [c.205]    [c.279]    [c.423]    [c.41]    [c.147]    [c.87]   
Монтаж технологического оборудования Том 2 (1976) -- [ c.0 ]



ПОИСК



Основные технические характеристики специального лабораторного оборудования для производства стружечных плит

Плита

Плиты из сплавов магниевых поверочные — Характеристики

Плиты крепежные — Техническая характеристика

Плиты магнитные — Силовые характеристики

Плиты силовые зарубежных фирм — Технические характеристики

Техническая характеристика специального технологического оборудования для производства стружечных плит

Характеристика для плит с циркуляцией атмосфер



© 2025 Mash-xxl.info Реклама на сайте