Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легированная сталь — Механическая

Гайки из углеродистой и легированной стали — Свойства механические 220 -- колпачковые 239  [c.410]

Легирующие элементы вводят с целью повышения конструкционной прочности сталей, что достигается при их использовании в термически упрочненном состоянии — после закалки и отпуска. В отожженном состоянии легированные стали по механическим свойствам практически не отличаются от углеродистых. В связи с этим обеспечение необходимой прокаливаемости — первостепенное назначение легирования. Прокали-ваемость стали определяется ее химическим составом. Все легирующие элементы, кроме кобальта, повышают устойчивость переохлажденного ау-стенита, снижают критическую скорость закалки и увеличивают прока-ливаемость. Для легирования обычно используют Мо, Мп, Сг, Si, Ni, V и микродобавки (0,002-0,005%) В. Эффективно повышает прокаливае-мость введение нескольких элементов хрома и молибдена хрома и никеля хрома, никеля и молибдена и т.д. При комплексном легировании высокие механические свойства можно получить практически в сечении любого размера, поэтому комплексно-легированные стали применяют для крупных деталей сложной формы. Возможность менее резкого охлаждения при закалке таких деталей уменьшает в них напряжения и опасность образования трещин.  [c.257]


Образцовые меры твердости изготавливают из качественной углеродистой или легированной стали. В табл. 14 приведены значения твердости углеродистой или легированной стали после механической и термической обработки, а также разброс этих значений. Образцовые меры, твердость которых невелика, могут изготовляться из цветных металлов и сплавов.  [c.126]

При высокой производительности и хорошем качестве поверхности отрезаемой заготовки отрезка абразивными кругами даже при наличии обильного охлаждения может образовать прижоги, Прижоги на заготовках из любой стали и в особенности из высокоуглеродистых и легированных сталей затрудняют механическую обработку, торцов и центрование. Включая абразивную отрезку в технологический процесс изготовления детали, необходимо учесть этот недостаток и путем удаления дефектного слоя резанием твердосплавным инструментом или термической обработкой обеспечить нормальную обработку. Наличие прижогов на заготовках не оказывает влияния на последующую их сварку, поэтому абразивную отрезку загото-  [c.83]

Наиболее высокая критическая скорость охлаждения у углеродистых сталей, обладающих в связи с этим наименьшей прокаливаемостью. С присадкой легирующих элементов критическая скорость охлаждения уменьшается следовательно, для легированной стали заданные механические свойства могут быть получены при больших сечениях деталей, чем для углеродистой.  [c.65]

Нормализация углеродистой стали применяется для улучшения микроструктуры и повышения механических свойств, подготовки структуры к последующей термической обработке (для легированных сталей), улучшения механической обрабатываемости мягких и вязких сталей.  [c.70]

КЛАССИФИКАЦИЯ ЛЕГИРОВАННОЙ СТАЛИ ПО МЕХАНИЧЕСКИМ  [c.82]

Для изготовления литых деталей применяют чугуны (серый, модифицированный, высокопрочный, ковкий, легированный), сталь (углеродистую, легированную), медные, магниевые, алюминиевые, цинковые, свинцовые, оловянные и никелевые литейные сплавы, которые хорошо заполняют в расплавленном сосгоянии литейную форму и обладают после затвердевания необходимыми механическими, физическими и химическими свойствами. Марку материала детали указывают в соответствующей графе основной надписи чертежа. Многие литейные сплавы имеют в обозначении марки букву Л, которая характеризует литейные свойства материала и указывает способ изготовления детали.  [c.256]


Стандарт распространяется т механические свойства болтов, винтов и шпилек, изготовленных из углеродистых и легированных сталей при нормальной температуре, диаметром резьбы от 1 до 48 мм.  [c.180]

В отличие от некоторых легированных сталей механические свойства углеродистых (и многих других) сталей не зависят от скорости охлаждения после нагрева до температуры отпуска. Свойства стали после отпуска зависят только от температуры н продолжительности отпуска.  [c.281]

Поэтому для машиностроительных деталей небольших сечений высокие механические свойства получаются при простых легированных сталях типа 40Х. Присадка бора ( 0,003%) увеличивает предельный диаметр изделия, но несколько повышает порог хладноломкости, хотя запас вязкости будет не хуже, чем в углеродистых сталях.  [c.386]

Высокие механические свойства легированных сталей обеспечили их преимущественное применение по сравнению с углеродистыми во многих отраслях специального машиностроения (авиации, автомобилестроении и т. д.). Вместе с тем в легированных сталях чаще появляются различные дефекты, встречающиеся, но реже в углеродистых сталях. Часто при самом строгом соблюден[1и правильно установленных технологических режимов эти дефекты не поддаются полному устранению. Важнейшие из них отпускная хрупкость, дендритная ликвация и флокены (явление отпускной хрупкости см. в п. 2 этой главы).  [c.408]

Механические свойства легированных литейных сталей определяются количеством легирующих элементов. Легирование значительно повышает механические и эксплуатационные свойства (жаропрочность, коррозионную стойкость, износостойкость и т. д.). Например, марганец повышает износостойкость, хром — жаростойкость, никель—коррозионную стойкость и т. д.  [c.165]

Стальные электроды применяются при дуговой электрической сварке конструкционных, легированных сталей, сталей с особыми свойствами, при сварке чугунов и при наплавке. Металлические электроды для дуговой сварки черных металлов разделяются по свойствам покрытий на электроды с ионизирующим покрытием (тонкопокрытые) и электроды с защитным покрытием (толстопокрытые), которые способны наряду с защитой значительно легировать металл шва, меняя химический состав и механические свойства наплавленного металла.  [c.31]

При изготовлении поковок на них образуется слой окалины, который при дальнейшей механической обработке сильно увеличивает износ режущего инструмента иногда этот слой бывает настолько тверд, что инструмент не может его обрабатывать поэтому глубина резания должна быть больше толщины слоя окалины. При обработке углеродистых сталей для этого часто оказывается достаточной глубина резания, равная 1,5 мм для легированных сталей глубина резания должна быть 2—4 мм.  [c.96]

Общее время накатки 1,5 минуты. Экономия легированной стали около 40%. Требуемая точность зубьев получается после чистовой механической обработки зуба. Величина припуска при этом равна 0,2— 0,3 мм на сторону зуба.  [c.319]

В химическом машиностроении наряду с легированными сталями находят широкое применение в качестве конструкционных материалов различные цветные металлы и сплавы, использование которых определяется как особенностями технологических процессов, так и благоприятными физико-механическими и антикоррозионными свойствами этих материалов.  [c.245]

Цементации подвергают углеродистые и легированные стали с низким содержанием С (0,1—0,2%), чтобы получить в изделии вязкую сердцевину. Для повышения прочностных свойств сердцевины содержание С в стали повышают до 0,3%. Цементацию проводят после окончательной механической обработки с небольшим припуском на шлифование.  [c.139]

Наибольшее повышение механических свойств достигается в результате одновременной присадки нескольких легирующих элементов. Лучший эффект дает легирование стали элементами в следующих сочетаниях Н1-ЬСг Мп + Сг М1 + Мо Ы1- -Сг-фМо Ni+ r + W  [c.177]


Классификация поковок (из легированной стали) по механическим свойствам (по ГОСТ 2334-43) одновременно является классифика-  [c.359]

В качестве трубопроводов гидросистем машин в основном применяют бесшовные цилиндрические трубы из сталей СЮ и С20 (ГОСТ 8734—58) и реже трубы из цветных металлов. Для гидросистем самолетов применяют преимущественно трубопроводы из нержавеющей стали 1Х18Н9Т и реже — из сталей ЗОХГСА и 20 в отдельных случаях применяют трубы из высокопрочного сплава на медной основе. Для сверхвысоких давлений (500—7000 кПсм ) применяют трубы из специальных легированных сталей с механической обработкой внутренней поверхности. Для специальных целей применяют также трубы из никеля, титана и различных сплавов. Трубопроводы из титановых сплавов имеют преимущества перед стальными трубопроводами по удельному весу и жаропрочности, но значительно уступают им по пределу выносливости и допустимым усталостным напряжениям.  [c.571]

Для сверхвысоких давлений (5000 —7000 кПсм ) применяют трубы из специальных легированных сталей с механической обработкой внутренней поверхности. Для специальных целей применяют также трубы из никеля, титана и различных сплавов.  [c.465]

Высокопрочные стали. К высокопрочным относятся порошковые конструкционные стали с Оз > 1,8 ГПа после низкого (до 200 °С) отпуска или > 1,2 ГПа после высокого (500 °С) отпуска. Высокие показатели прочности порошковых конструкционных сталей обеспечиваются повышением относительной плотности прессовок до 100%, рациональным комплексным легированием и рациональной термической обработкой. Важнейшим условием получения высокопрочного состояния являетяся однородность структуры порошковых сталей. Самый простой, дешевый и широко распространенный способ получения порошковых легированных сталей - использование механической смеси порошков железа, углерода и легирующих элементов. Однако это приводитк значительной сегрегации элементов и формированию гетерогенной структуры, а следовательно, - к получению нестабильных механических свойств. Так, порошковые никелевые стали характеризуются пятнистой неоднородной структурой, состоящей из нерастворившихся частиц никеля и основы -перлита. Это вызывает необходимость применения высокотемпературного спекания (1300-1350 °С), требующего специального термического оборудования.  [c.307]

Понижение порога хладноломкости и увеличение содер ка-ния волокна (%) в изломе приводит к поеышепию механических свойств. Наиболее простым решением вопроса является введение в сталь никеля, элемента, — понижающего температуру перехода в хладноломкое состояние и поэтому увеличивающего долю волокна в изломе в высокояроч.нон стали. В связи с этим улучшаются вязкие свойства, однако в обычных сталях нельзя увеличить содержание никеля свыше 4%, так как появляется остаточный аустенит (имеющий пониженную прочность, а продукты его распада пониженную вязкость), понижается то1Ч,ка A i и нельзя провести высокий отпуск. Решение задачи применения высоконикелевой стали состояло в одновременном легировании стали никелем и кобальтом. Кобальт повышает мартенситную точку (рис. 303) и уменьшает поэтому количество остаточного аустенита (рис. 303,6). Одновременно кобальт повышает точку A i и позволяет провести операцию высокого отпуска.  [c.392]

Такая особенность легирования марганцовистого аустенита алюминием использована в наиболее экономичной и достаточно технологичной немагнитной стали 45Г17ЮЗ. Механические свойства этой стали в закаленном состоянии следующие Оа=70 кгс/мм, [c.552]

Рис. 13.47. Неоднородность механических Boii TB различных зон сварного соединения легированной стали Рис. 13.47. <a href="/info/222888">Неоднородность механических</a> Boii TB различных зон <a href="/info/2408">сварного соединения</a> легированной стали
Электроконтактная обработка основана на локальном нагреве заготовки в месте контакта с электродом-инструментом и удалении размягченного или даже расплавленного металла из зоны обработки механическим способом относительным движением заготовки и инструмента. Источником теилоты в зоне обработки служат импульсные дуговые разряды. Электроконтактную обработку (ЭКО) оплавлением рекомендуют для обработки крупных деталей из углеродистых и легированных сталей, чугуна, цветных сплавов, тугоплавких и специальных сплавов.  [c.405]

Материалы гибкого и жесткого колес. Гибкие колеса волновых передач изготовляют из легированных сталей. Термической обработке — улучшению —подвергают заготовку в виде толстой трубы (твердость 30—37 НКСД. Механическую обработку выполняют после термообработки. Зубчатый венец рекомендуют подвергать упрочнению наклепу, включая впадины зубьев, или азотированию.  [c.236]

В некоторых случаях при очень быстром движении коррозионной среды или при сильном ударном механическом действии ее на металлическую поверхность наблюдается усиленное разрушение не только защитных пленок, но н самого металла, называемое кавитационной эрозией. Такой вид разрушения металла наблюдается у лопаток гидравлических турбин, лопаете пропеллерных мешалок, труб, втулок дизелей, быстро-ходшчх насосов, морских гребных винтов и т. п. Разрушения, вызываемые кавитационной эрозией, характеризуются появлением в металле трещин, мелких углублений, переходящих в раковины, и даже выкрашиванием частиц металла. С увеличением а1-рессивности среды кавитадиоппая устойчивость конструкционных металлов и сплавов понижается. Кавитационная устойчивость металлов и сплавов в значительной степени зависит не только от природы металла, но н от конфигурации отдельных узлов машин и аппаратов, их конструктивных особенностей, распределения скоростей потока жидкостей и др. Известно также, что повышение твердости металлов повышает их кавитационную стойкость. Этим объясняется, что для борьбы с таким видом разрушения обыч)ю применяют легированные стали специальных марок (аустенитные, аустенито-мартенситные стали и др.), твердость которых повышают путем специальной термической обработки.  [c.81]


Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимугцеств по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примеггеиие сплавы никеля с медью и его сплавы с молибденом.  [c.255]

Выбор материала валов. Для правильного выбора материала валов и термообработки их необходимо знать тип подшипников, в которых вращается вал, характер посадок деталей на валу (подвижные пли с натягом), характер действующей нагрузки. Второй вал быстроходный, вращается в подшипниках <ачения. Зубчатые колеса 2i и 22 (см. рис. 8.3) свободно вращаются на валу, по шлицевому -участку вала перемещается кулачковая полумуфта. Для обеспечения достаточной износостойкости трущихся поиерхн остей этого вала выбираем легированную сталь 40Х. Для условий крупносерийного производства приемлемым видом термообрабо ки трущихся поверхностей является закал) а с нагревом ТВЧ до твердости HR 50...54. Механические характеристики Of, = 730 МПа, = 500 МПа, Тт = = 280 МПа, а , = 320 МПа, т , = 200 Ша, = 0,1, 11 = 0,05.  [c.307]

Высокий отпуск ( низкий отжиг- ). После горячей механической обработки сталь чаще имеет мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но вследствие ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру сорбит, троостит, бейпит или мартенсит и, как следствие этого, высокую твердость. Для снижения твердости на металлургических заводах сортовой прокат нодвергакгг высокому отпуску при 650—680°С (несколько ниже точки Л,). При нагреве до указанных температур происходят процессы распада маргеисита и (или) бейнита, коагуляция карбидов в троостите и в итоге снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки ре , апием, холодной высадки или волочения. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига, когда структура — обособленные участки феррита и перлита. Структурно свободный феррит налипает на кромку инструмента, ухудшает качество поверхности изделия, снижает теплоотдачу, и поэтому снижает скорость резания и стойкость п г-струмента. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения (см. рис. 118, в), высокий отпуск является единственной термической обработкой, позволяющей понизить их твердость.  [c.198]

В табл. 8 привед.еиы нрп,меры улучи1 1С мых ко/iei у (ционпых легированных сталей. Приведет) в таб.-г 8 режимы тер.мической обработки п механические свойства относятся к образцам (по ГОСТ). Режимы термической обработки и свойства изделия, как правило, несколько отличаются от приведенных в табл, 8.  [c.268]

Для получения сплавов титан легируют А1, Мо, V, Мп, Сг, Sn, Fe, Zr, Nb. Титан легируют для улучшения механических свойств, реже — для повьинення коррозионной стойкости. Удельная прочность (a /Y) титановых сплавов вьнне, чем легированных сталей.  [c.314]

Химико-термическая обработка обеспечивает высокие механические свойства поверхности легированных сталей. Так, Т1 ускоряет цементацию и позволяет при этом формировать температурные режимы Сг, Мо и А1 содействуют эффективному азотированию Сг повышает также эффе7<тивпость борировапия.  [c.171]


Смотреть страницы где упоминается термин Легированная сталь — Механическая : [c.410]    [c.410]    [c.359]    [c.30]    [c.159]    [c.513]    [c.413]    [c.26]    [c.492]    [c.77]    [c.241]    [c.373]    [c.398]    [c.234]    [c.255]   
Справочник машиностроителя Том 3 (1951) -- [ c.0 ]



ПОИСК



Сталь легированная

Сталя легированные



© 2025 Mash-xxl.info Реклама на сайте