Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сдвиг Энергия потенциальная деформаций упругих

Отметим некоторые преимущества смешанной вариационной формулировки задачи (1.82), (1.83) по сравнению с классическим методом перемещений. При решении задач прикладной теории упругости и строительной механики методом конечных элементов сходимость решений в ряде случаев определяется реакцией элемента на смещения как жесткого целого и геометрической изотропией (когда не отдается предпочтение какому-либо направлению) аппроксимации деформаций. Плохая сходимость решений, в первую очередь, характерна для криволинейных элементов оболочечного типа, поскольку аппроксимация перемещений полиномами низкой степени является грубой для описания смещений как жесткого целого. Такие элементы могут накапливать ложную деформацию и вносить существенные погрешности в решение задач. При учете деформаций поперечных сдвигов и обжатия в многослойных оболочечных элементах учет смещения как жесткого целого становится особенно важным, поскольку при уменьшении параметра тонкостенности (A/i ) указанные деформации стремятся к нулю, а коэффициенты их вклада в общую потенциальную энергию стремятся к бесконечности. Таким образом, погрешности в вычислении деформаций усиливаются и могут дать значительную ложную энергию, превосходящую энергию изгиба или энергию мембранных деформаций. Независимая аппроксимация полей деформаций в пределах конечного элемента при использовании смешанного метода позволяет обеспечить минимальную энергию ложных деформаций и требуемый ранг матрицы жесткости.  [c.23]


Энергия, переносимая волной. В лекции по деформациям упругих твердых тел мы отмечали, что при деформации сдвига в единице объема тела запасается потенциальная энергия  [c.80]

Потенциальная энергия упругой деформации при сдвиге определяется формулой  [c.58]

Вопрос о влиянии деформации сдвига при изгибе на величину прогибов и тесно с этим связанные вопросы о влиянии сдвигов на кривизну оси балки и об учете потенциальной энергии стеснения депланации поперечного сечения стержня, вызванной сдвигом, обсуждался в рамках элементарной теории в ряде работ в некоторых из них предприняты попытки оценки результатов при помощи аппарата теории упругости.  [c.502]

Зависимость при небольших деформациях s О, I линейна и содержит обычно только одну постоянную G — модуль сдвига. Модуль упругости для резины Е = 30. Только для тонкослойных элементов необходима вторая постоянная — объемный модуль сжатия К- Для большинства резин G = 6-ь 20 кгс/см , К = (2 3)-10 кгс/см . При деформациях е < 0,5 достаточную точность обеспечивает допущение, что удельная потенциальная энергия /пропорциональна первому инварианту деформаций  [c.216]

Энергетический критерий. Этот критерий, развитый Мизесом и Генки, предполагает, что разрушение происходит тогда, когда энергия сдвига достигает некоторой определенной величины. Эта энергия сдвига является функцией трех главных напряжений. Предполагается, что причиной возникновения опасных деформаций является не вся потенциальная-энергия деформации, а только та часть ее, которая связана с изменением формы элементарных объемов материала и равная разности между общей энергией упругой деформации и упругой энергией, необходимой для изменения объема элемента.  [c.394]

Для подсчета dU разобьем элемент бруса dx (рис. 6.41 а) продольными нормальными к средней линии сечениями на более мелкие прямоугольные элементы dx ds. Каждый такой элемент находится в состоянии чистого сдвига (рис. 6.41 б ) и в нем накопится потенциальная энергия деформаций, равная линейно-упругой работе деформирующей его силы Txs ds на пути ухз dx. Суммируя потенциальные энергии по элементам вдоль контура средней линии, получаем  [c.147]

Если сопоставить между собой течения пластическое и вязкое, то, как это показали специальные исследования, во-первых, возникновение пластического течения вещества всегда связано с относительно резкими изменениями в структуре вещества, в то время как при вязком течении никаких изменений в структуре вещества не наблюдается. Во-вторых, как и при упругой деформации, при пластическом течении касательные напряжения увеличиваются при увеличении деформации сдвига, однако между касательными напряжениями и деформациями сдвига не имеет места прямая пропорциональность и относительное приращение касательных напряжений оказывается значительно менее интенсивным по сравнению с увеличением деформаций сдвига. Аналогично, как и при вязком течении, при пластическом течении касательное напряжение увеличивается при увеличении скорости сдвига, между касательными напряжениями и скоростями сдвига не имеет места прямая пропорциональность, и относительное изменение касательных напряжений оказывается значительно меньше относительного изменения скоростей сдвига. В-третьих, увеличение касательных напряжений при пластическом течении происходит за счет структурных изменений вещества. При этом пластически деформируемое твердое тело приобретает способность аккумулировать большую потенциальную энергию упругого формоизменения. Все явление в целом носит название деформационное упрочнение. В дальнейшем мы увидим, что явление деформационного упрочнения твердых поликристаллических тел — металлов приобретает особую значимость при их эффективной холодной деформации.  [c.53]


Для области упругих деформаций, когда нарастание Q в зависимости от абсолютного сдвига происходит по линейному закону (фиг. 65), потенциальную энергию вычисляют как площадь треугольника на диаграмме сдвига  [c.63]

Вычислим вариацию работы внутренних сил упругости оболочки с учетом сдвига в заполнителе, равную вариации потенциальной энергии деформации оболочки с обратным знаком.  [c.53]

При составлении уравнения (43) энергетического баланса предполагалось, что а) удар неупругий б) деформация мгновенно охватывает всю пружину (допустимо принимать при г о<5 м1сек) и скорости её отдельных элементов пропорциональны перемещениям зтих элементов при статическом приложении нагрузки в месте удара в) все деформации упруги и потенциальная энергия пружины может быть подсчитана по формулам, соответствующим статическому нагружению г) опоры пружины считаются абсолютно жёсткими д) деформация ударяющего тела во внимание не принимается. Если Vo м1сек > 0,28 (ту. кг млА) (ту. — предел текучести материала при сдвиге), то в первом витке пружины, свитой из проволоки круглого поперечного сечения, неизбежно возникнут пластические деформации вне зависимости от массы ударного груза.  [c.892]

Угол сдвига Уху элемента (рис. VI.4, а) с размерами Ь, (18, (1у (рис. VI.4,6) перемещен по высоте сечения /г, поэтому для определения duQ придется сначала вычислить d (( Ид — потенциальную энергию деформации этого элемента. Касательные силы упругости, действующие по граням элемента, параллельным нейтральному слою, нормальны к перемещению, и, следовательно, их работа равна нулю. Для элемента 1, ybdy — сила, действующая по грани, совпадающей с поперечным сечением ii5J, = у, у 15 — перемещение этой грани. Тогда  [c.212]

При наличии мягких покрытий вибропоглощающий слой почти не вызывает сдвига нейтральной оси пластины при изгибных колебаниях. Поглощение энергии происходит в основном за счет деформации вибропоглощающего слоя. Так как модуль упругости мягкого покрытия мал, то длина упругой волны в покрытии также мала и уже на относительно низких звуковых частотах (порядка нескольких сот герц) соизмерима с толщиной покрытия. Вследствие этого имеют место интенсивные колебания по толщине вибропоглощающего слоя, нормальные к его поверхности. Потенциальная энергия деформации этого слоя мала по сравнению с потенциальной энергией в металле, но коэффициент потерь покрытия для применяемых материалов относительно велик (т = 0,5), поэтому коэффициент внутренних потерь пластины с покрытием может достигнуть десятых долей единицы. Максимумы поглощения колебательной энергии будут наблюдаться на частотах, где по толщине вибропоглощающего слоя укладывается несколько полуволн, поэтому полоса частот вибропоглощепия достаточно широка. Уровень уменьшения шума в случае мягких вибропоглощающих покрытий можно рассчитывать при помощи выражения (193).  [c.130]

Вернемся к нашему опыту, результаты которого представлены в виде диаграммы на рис. VI. 1. Если мы после того, как будет достигнута точка / на кривой, разгрузим образец, то произойдет некоторая упругая деформация, соответствуюш,ая разности абсцисс в точках / и g, а деформация og будет пластической или остаточной. Затем снова произведем нагружение до величины, соответст-вуюш,ей точке /, при этом мы приблизительно достигнем той же точки (обозначенной на рисунке h) за счет упругой деформации образца с тем же самым модулем упругости, что и при нагружении. Это видно на рисунке, где наклон линии gh совпадает с наклоном линии оа. Таким образом, кривая а — с — Ь — е является геометрическим местом точек всех пределов текучести, соответствующих последовательно возрастающей деформа ц и и Тем не менее, как уже ясно по причинам, с которыми мы уже сталкивались раньше в двух других случаях предел текучести не могкет непосредственно зависеть от деформации. Мы упоминали в параграфе 10 о повышении предела текучести материала при кручении стержня. Совершенно ясно, что это явление не может зависеть от того, закручиваем мы стержень в нанравлении часовой стрелки или против часовой стрелки. Поэтому предел текучести Тт должен быть четной функцией деформации сдвига у, т. е. функцией Y Вспомним (см. главу IV, параграф 5), что величина тт сама вычисляется, как корень квадратный от другой величины предельной упругой потенциальной энергии, которая сама есть четная функция напряжения. Полезно вспомнить и тот факт, что нри повышении предела текучести затрачивается р а б о т а на пластическую, по не полную деформацию. Представим себе, что существует такой гигант, который обладает достаточной силой для того, чтобы месить мягкое железо, так как мы месим мучпое тесто. Дадим ему стальной шар, которому он будет придавать любую форму, а в конце восстановит сферическую форму. Когда он вернет нам шар, деформация его будет нулевой все искажения формы — ноложительные и отрицательные — уничтожат друг друга. Однако, работа деформации будет все время возрастать до определенной величины. Если мы предположим, для того чтобы сделать наши рассуждения более определенными, что деформация представляет собой простые сдвиги, в положительном или отрицательном нанравлении, то работа, выраженная через деформацию, в соответствии  [c.338]


Найдем потепциальпую энергию изгиба балки. При поперечном изгибе в балке возникают нормальные Ох и касательные Тху или Txs напряжения. Выделим из балки поперечными и продольными сечениями элемент (продольное волокно) (рис. 8.61), объем которого dV — = dx dF, и подсчитаем накопившуюся в нем потенциальную энергию деформации dU. При линейно-упругой деформации сила ах dF совершит упругую работу на пути Ех dx, который она пройдет за счет удлинения элемента вдоль оси ж, а сила TxydF совершит упругую работу на пути jxydx, который образуется из-за сдвига jxy в плоскости ху. Эта работа и накопится в волокне в виде потенциальной энергии деформации. Поэтому  [c.228]

Потенциальная энергия системы определяегся работой силы тяжести mg и сил упругости пружин нри перемещении системы из положения, соотвегствующего сдвигу массы т вниз и увеличению деформации пружин на расстояние х, обрапю в положение равновесия, нри когором х = 0  [c.264]


Смотреть страницы где упоминается термин Сдвиг Энергия потенциальная деформаций упругих : [c.118]    [c.91]   
Краткий справочник машиностроителя (1966) -- [ c.179 ]



ПОИСК



166, 195, 401, 533,— сдвига 164, 203,400, — упругости,

Деформация сдвига

Деформация упругая

Потенциальная энергия деформаци

Потенциальная энергия при сдвиге

Сдвиг потенциальная энергия деформаци

Сдвиг энергия

Упругая деформация. Сдвиг

Упругая потенциальная энергия

Упругая энергия

Упругие сдвиге

Энергия деформации

Энергия деформации потенциальная

Энергия деформации потенциальная сдвиге

Энергия деформации сдвига

Энергия деформации упругих деформаций

Энергия потенциальная

Энергия упругой деформации

Энергия упругости

Энергия упругости сдвига



© 2025 Mash-xxl.info Реклама на сайте