Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единицы временно электрические

Таким образом, снимаемая с участка канала длиной х в единицу времени электрическая мощность равняется  [c.611]

При отсутствии электрического поля вероятность перемещения иона из точки Р на поверхности раздела (см. рис. 26) до точки 0 (см. рис. 28) за единицу времени равна  [c.53]

Сферическая частица радиусом а вводится в область униполярных ионов с концентрацией /г о и электрического поля Eq. Частица приобретает заряд благодаря столкновениям с ионами. Так как заряд частицы начинает нарастать, ее отталкивающая сила перераспределяет близлежащие ионы. Для применения кинетической теории будем использовать систему координат, показанную на фиг. 10.2. При концентрации ионов и средней длине свободного пробега Л число ионов, которые сталкиваются в бесконечно малом объеме dV в единицу времени со скоростью между v перед столкновением ш V dv после столкновения, равно щ v/A) f v) dv dV, где f (v) — функция распределения скорости у, a — местная концентрация ионов. Количество ионов, попадающих на площадку dA из точки Р объема dV, равно щ (р1А) / (и) dvl(dA os 0д/4яг ) dV [413, 874[. Так как число молекул, направляющихся к площадке dA, уменьшается по закону вследствие столкновений и так  [c.437]


Это выражение получено нами из рассмотрения частного случая движения электрических зарядов в металлическом проводнике. Для того чтобы выяснить, насколько общим является это выражение и можно ли его распространять на другие случаи движения электрических зарядов в магнитном поле, необходимо представить себе физическую картину движения зарядов в металлическом проводнике и возникновения силы F. В металлическом проводнике носителями зарядов являются свободные электроны, слабо связанные с атомами металла. Независимо от того, течет по проводнику ток или нет, свободные электроны совершают хаотическое тепловое движение со скоростями порядка сотен километров в секунду (эта скорость растет с ростом температуры). Пока электрическое поле в проводнике отсутствует, вследствие полной хаотичности теплового движения за единицу времени через любое сечение проводника в обе стороны проходит одинаковое число электронов, т. е. одинаковое количество электричества, и ток  [c.80]

При прохождении тока каждая единица объема, с одной стороны, теряет энергию из-за теплового потока I (эта потеря равна —( у/), а с другой стороны, получает в единицу времени, во-пер-аых, электрическую энергию (/, и, во-вторых, дополнительную  [c.23]

Первый член правой части представляет собой выделяющуюся за единицу времени в единице массы проводника теплоту, обусловленную теплопроводностью третий член — джоулеву теплоту. Второй член характеризует теплоту Томсона Qp — дополнительное количество теплоты, выделяющееся при прохождении электрического тока по термически неоднородному проводнику. Теплота Томсона обусловлена совместным действием теплопроводности и электропроводности и определяется по формуле  [c.359]

Электрический ток, будучи выведен из канала, может производить полезную работу во внешней цепи. С единицы массы текущего газа на участке канала длиной х может быть снята полезная электрическая мощность, равная произведению силы тока а йх на разность потенциалов между электродами (которыми служат боковые стенки канала) ЕЬ деленному на массу протекающего за единицу времени газа — аЬ (и — удельный объем газа).  [c.611]

Пусть -газ, заключенный в цилиндре с неподвижным поршнем, получает из окружающей среды теплоту Q, например, через крышку (рис. 2.5, а) путем ее электрического нагрева в течение малого промежутка времени. В объеме газа возникнут неоднородности температуры и плотности, начнется движение газа —равновесие нарушится. Чем больше теплоты будет подведено в единицу времени, тем значительнее будет отклонение неравновесного состояния от равновесного. Через некоторое время после окончания подвода теплоты газ самопроизвольно вернется в состояние равновесия.  [c.20]


Количество выделяющейся в неравномерно нагретом проводнике теплоты при прохождении электрического тока изменяется по сравнению с тем количеством теплоты, которое выделяется при отсутствии тока (эффект Томсона), В единице объема проводника за единицу времени выделяется количество теплоты Q, равное —div q. Взяв дивергенцию от обеих частей уравнения (2.122), учитывая,  [c.172]

Плотность тока 3 (электрический заряд, переносимый в единицу времени через единицу площади, перпендикулярную к электрическому полю) определяется выражением  [c.11]

Перейдем теперь к определению магнитного момента атома водорода. Как было сказано в 18 и 21, квадрат модуля собственной функции уравнения Шредингера = дает объемную плотность вероятности, а величина —заряд электрона,—среднее значение плотности электрического заряда. Так как общее решение уравнения Шредингера представляет собой функцию координат и времени, то можно вычислить заряд, переносимый в единицу времени через единицу площади, т. е. плотность электрического тока j. По плотности тока может быть найден и магнитный момент, соответствующий данному состоянию атома.  [c.116]

На практике могут встретиться случаи, когда тепло возникает внутри объема тела за счет внутренних источников тепла, например за счет прохождения электрического тока, химических реакций, ядерного распада и др. Поскольку объемное тепловыделение может быть не только равномерным, но и неравномерным, для таких процессов важным является понятие удельной интенсивности объемного тепловыделения или мощности внутренних источников. Эта величина, обозначаемая q , определяет собой количество тепла, выделяемого единицей объема тела в единицу времени она имеет размерность Вт/м . При поглощении тепла внутри объема тела, например, при эндотермической реакции величина отрицательна она характеризует интенсивность объемного стока тепла.  [c.26]

Диффузия катионов, анионов и электронов в оксидной пленке неодинакова, что ведет к разделению зарядов с, созданием результирующего электрического поля. В теории окисления Вагнера при математическом ее описании учитывается диффузия частиц, обусловленная как химическим, так и электрическим потенциалами. Число частиц, проходящих через единицу поверхности в единицу времени, выражается в следующем виде  [c.53]

Анализ теплового загрязнения района КАТЭКа предполагал определение количества тепла, выделенного при работе ТЭС комплекса, и сравнение его с величиной суммарной солнечной радиации для данной территории, площадь которой в одном варианте была ограничена зоной активного влияния, в другом — размерами всей территории КАТЭКа. Для района КАТЭКа среднегодовая величина суммарной солнечной радиации, приходящейся на верхнюю границу атмосферы после перераспределения в системе Земля — Космос, равна примерно 265 Вт/м . Количество тепла, сбрасываемого станциями, можно определить либо по количеству топлива, сжигаемого в единицу времени, либо по электрической мощности комплекса.  [c.271]

В гл. 6 рассматриваются более подробно вопросы использования солнечной энергии для получения теплоты. В данной главе остановимся только на системах, предназначенных для преобразования солнечной энергии в электрическую. Начнем поэтому с рассмотрения тех характеристик, которые являются наиболее важными при этих процессах, прежде всего— спектр солнечного излучения. На рис. 5.6 показано, как распределена по длинам волн энергия солнечного излучения, падающего в единицу времени на единицу поверхности и приходящегося на единичный интервал длин волн. Спектр, измеренный на верхней границе земной атмосферы, очень хорошо совпадает со спектром излучения абсолютно черного тела при температуре 6000 К. Абсолютно черным телом называется физическое тело, которое излучает энергию во всем спектре и поглощает все падающее на него излучение независимо от длин волн. Таких тел в природе не существует, но существуют тела с очень близкими свойствами. Понятие абсолютно черного тела играет важную роль в физике. Так, решая задачу о распределении излучения абсолютно черного тела по длинам волн, Макс Планк впервые сформулировал принципы квантовой механики. В распределении солнечного излучения по длинам волн, измеренном вблизи поверхности Земли, имеются большие провалы, обусловленные поглощением излучения на отдельных частотах или в отдельных интервалах частот атмосферными газами — кислородом, озоном, двуокисью углерода — и парами воды.  [c.95]


Таким образом, при включении внешнего электрического поля электронный газ начинает разогреваться. Вместе с этим возникает и непрерывно растет передача тепла от электронов к решетке. В конце концов устанавливается стационарная разность температур АТ между электронным газом и решеткой, причем тем большая, чем выше напряженность электрического поля ё. В стационарном состоянии количество энергии, получаемой электронами от поля, равно количеству энергии, передаваемой ими решетке и выделяющейся в виде тепла. Согласно (7.33) в единице объема проводника в единицу времени должно выделиться следующее количество тепла  [c.194]

Наконец, наблюдения над электромагнитными и электродинамическими дальнодействиями замкнутых электрических токов привели к выражениям для пондеромоторных и электромоторных сил, которые во всяком случае примыкают к выражениям, которые Лагранж дал для механики весомых тел. Первым, кто дал такую формулировку для законов электродинамики, был Ф. Нейман ) (старший). Электрические токи, т. е. количество электричества, которое в единицу времени проходит через элемент поверхности, ограниченный материальными частицами проводника, рассматриваются им как скорости. Позже В. Вебер и Клаузиус дали другие формы, в которых вместо скоростей тока фигурируют относительная или абсолютная скорости количеств электричества в пространстве. Для замкнутых токов следствия из этих разных формулировок во всем совпадают. Они оказываются различными для незамкнутых токов. Накопленные в этой области факты показывают, что закон Неймана недостаточен, если, применяя его, принимать в расчет только движение электричества, происходящее в проводнике. Нужно, кроме того, принять во внимание также рассмотренные Фарадеем и Максвеллом движения электричества в изоляторах, которые имеют место при возникновении или при исчезновении в них диэлектрической поляризации. Если таким путем расширить закон Неймана, то под него подойдут и экспериментально изученные до сего времени действия незамкнутых токов.  [c.433]

Значительно более общая система единиц была создана К.Ф. Гауссом (1832 г.). Приняв в качестве основных единицы длины (миллиметр), массы (миллиграмм) и времени (секунда), Гаусс создал абсолютную систему единиц , в которую наряду с единицами механических величин входили единицы всех электрических и магнитных величин, которые в то время фигурировали в физике.  [c.52]

Сила электрического тока (сила тока). При движении зарядов по проводнику мы имеем дело с силой тока, аналогичной расходу жидкости или газа или тепловому потоку и измеряющейся количеством электричества, протекающим сквозь поперечное сечение проводника в единицу времени.  [c.246]

В этой книге неоднократно указывалось, что между числом основных единиц и числом универсальных постоянных существует однозначная связь чем больше основных единиц, тем больше постоянных в формулах физических законов и определений. Приравняв гравитационную постоянную единице с сохранением одновременно равенства единице инерционной постоянной, мы уменьшили число основных единиц в системах геометрических и механических единиц с трех до двух. Приравняв единице постоянную Больцмана, мы делаем производной единицу температуры. В системах злектрических и магнитных единиц можно произвести дальнейшее сокращение числа основных единиц, если приравнять единице электрическую и магнитную постоянные в системе, построенной по принципу Международной системы, или скорость света в системе, построенной по принципу СГС. Мы остаемся, таким образом, с двумя единицами, из которых одна — единица силы света — отражает физическую специфику восприятия света, а в качестве второй может быть по нашему выбору принята либо единица длины, либо единица времени.  [c.335]

Механизм ЭИ может быть представлен двумя процессами, действующими во времени друг за другом образование в результате электрического пробоя в поверхностном слое твердого тела канала разряда и последующее разрушение твердого тела под действием механических напряжений, возникающих в результате расширения канала разряда при выделении в нем энергии емкостного накопителя. Первая стадия процесса определяет уровень напряжения, при котором реализуется процесс ( рабочее напряжение ). Выбором оптимальных параметров импульсного напряжения и условий пробоя (вид среды, геометрия электродной конструкции) достигаются минимальные градиенты напряжения пробоя. На второй стадии процесса за счет оптимизации преобразования энергии накопителя в работу разрушения достигается минимальная энергоемкость разрушения материала. Техникоэкономическая эффективность процесса в значительной степени зависит от возможности интенсификации процесса разрушения - достижения высоких объемных показателей разрушения в единицу времени при приемлемых удельных показателях энергоемкости. Последнее может осуществляться как за счет увеличения числа единичных актов разрушения в единицу времени путем повышения частоты подачи  [c.25]

Полную тепловую мощность сварочной дуги, т. е. количество теплоты, выделяемое дугой в единицу времени, приближенно считают равной тепловому эквиваленту ее электрической мощности д=Шд, где / — величина сварочного тока. А 11д — падение напряжения на дуге, В — тепловой эквивалент электрической мощности сварочной дугй, Дж/с.  [c.11]

Так как изменение количества теплоты в единицу времени есть тепловой поток, то dQ/dt = 0 = T(dTldt), где Ст. = ст — аналог электрической емкости с — удельная теплоемкость m — масса тела.  [c.71]


Запишем выражение для моп1ности, рассеиваемой в объеме V, которая равна работе сил электрического поля в единицу времени  [c.38]

Если в жидкости имеются посторонние источники тепла, то к уравнению теплопроводности должен быть добавлен соответствующий дополнительный член (таким источником тепла может, например, являться нагревание электрическим током). Пусть Q есть количество тепла, выделяемое этими источниками в единице объема жидкости в единицу времени Q является, вообще говоря, функцией от координат и от времени. Тогда условие баланса тепла, т. е. уравнение теплопроводности, напишется в виде  [c.278]

Но переход от основных единиц — длины, массы и времени — к электрическим единицам может быть произведен и иным путем по силе взаимодействия токов. За единицу силы тока принимается такой ток, который, протекая по проводнику, длина которого равна единице, с таким же током, протекающим по такому же проводнику, расположенному параллельно первому на расстоянии, равном единице, взаимодействует с силой, равной единице. Все остальные электрические единицы устанавливаются при помощи трех основных единиц и единицы силы тока. Например, за единицу количества электричества принимается такое количество электричества, которое протекает через сечение проводника за единицу времени при силе тока, равной единице, и т. д. Такая система электрических единиц называется абсолютной электромагнитной сист.емой единиц. Вместе с системой GS она образует абсолютную систему единиц GSM,  [c.21]

При прохождении тока каждая единица объема, с одной стороны, теряет энергию из-за теплового потока I (эта потеря равна — divi), а с другой стороны, получает в единицу времени, во-первых, электрическую энергию (j, Е) и, во-вторых, дополнительную потенциальную энергию (-рЛ л- )ф= — 9divj вследствие возрастания заряда единицы объема. Таким образом, по закону сохранения энергии.  [c.273]

Определим прежде всего количество теплоты подводимой к термоэлементу от верхнего источника теплоты температуры Т , т. е. теплоотдат-чика, в единицу времени. Основной составной частью является теплота Q, перобразуемая в электрическую энергию она равняется согласно уравнению (10.48), поскольку контактная разность потенциалов мала по сравнению с л,  [c.603]

Определим количество теплоты <7 , подводимой к термоэлементу от верхнего источника теплоты температуры в единицу времени. Основная составная часть — теплота q, преобразуемая в электрическую энергию. Она определяется на основании эффекта Пельтье, согласно которому обратимое выделение теплоты на спае двух проводников при прохождении тока пропорционально силе тока поэтому q = л/, где л — коэффициент Пельтье, являющийся функцией температуры я = Я1 1ц — Пц 1п i — сила тока в цепи термогенератора.  [c.577]

С единицы массы текущего газа на участке канала длиной dx может быть снята полезная электрическая мощность, равная произведению силы тока ja dx на разность потенщ1алов между электродами, которыми служат боковые стенки канала, деленному на массу протекающего за единицу времени газа (w/v) аЬ (где v — удельный объем газа), т. е.  [c.586]

Выражение (3.31) справедливо при значениях напряженности поля Е, не превышающих некоторое критическое значение Е р, т. е. при Е<Екр, при которых подвижности носителей заряда не зависят от напряженности электрического поля и остаются постоянньпии. При Е>Е р носители заряда приобретают за время свободного пробега между столкновениями дрейфовую составляющую скорости, сравнимую со скоростью теплового движения и. При этом происходит насыщение скорости дрейфа, она перестает возрастать вследствие увеличения числа столкновений в единицу времени. Поэтому при Е>Е с ростом напряженности подвижность уменьшается, эта зависимость выражается эмпирической формулой  [c.60]

Из этой формулы следуег, что ток утечки в газах в слабых электрических полях прямо пропорционален напря- кенности, т. е. подчиняется закону Ома. При достаточно большой напряженности электрического поля вследствие увеличившейся скорости переброса зарядов электрическим полем на электроды рекомбинация прекратится. Все заряды, возникающие в данном объеме за единицу времени, будут достигать электродов. При этом ток утечки будет определяться только формулой (2-11) он будет зависеть не от приложенного напряжения, а только от интенсивности естественной ионизации. На рис. 2-9 показана зависимость тока утечки в воздухе от напряжения между электродами, В слабых ПОЛЯХ соблюдается закон Ома, при некотором значении напряженности наступает насыщение — ток перестает зависеть от напряженности. При применении искусственных ионизирующих воздействий, увеличивающих чи-  [c.44]

Закон Джоуля—Ленца. Сообщая свободным носителям задряда скорость направленного движения Уд, электрическое поле S совершает работу над коллективом этих носителей, увеличивая их энер- гию. Если, например, ток переносится электронами, то за единицу времени в единице объема от электрического поля электронному газу передается энергия ш, равная  [c.193]

Применим теперь одно выражение, введенное для электрического тока, к рассмотренным здесь движениям жидкости. Именно, мы будем говорить о сопротивлении жидкости, протекаюндей в пространстве, ограниченном твердой стенкой и двумя поверхностями равных потенциалов скоростей мы будем под этим подразумевать разность значений потенциала скоростей на обеих поверхностях, разделенную на объем жидкости, проходящей в единицу времени через поперечное сечение. Тогда сопротивление пространства, ограниченного рассмотренным гиперболоидом и простирающегося в обе стороны в бесконечность, будет равно  [c.180]

Уравнение (7.1) одновременно служит выражением баланса электрических зарядов и показывает, что при равновесном потенциале соблюдается материальный баланс, так как количество металла, перешедшего в единицу времени в раствор, в точности уравновешивается количеством металла, осадив-шимся на электроде в результате разряда одноименных ионов из раствора. В общем виде процессы, происходящие на поверхности раздела электрод— раствор, можио иредста-вить уравнением  [c.126]

Наименования единиц, помещаемых в знаменателе, пишутся с предлогом иа> по аналогии с наименованием единиц ускорения — метр на секунду в квадрате, кинетической вязкости — квадратный метр на секунду, напряженности электрического поля — вольт на метр. Исключение составляют единицы величин, зависящих от времени в первой степени и характеризующих скорость протекания процесса в этих случаях наименование единицы времени, помещаемой в знаменателе, пишется с предлогом в , по аналогии с наименованиями единиц скоростй — метр в секуиду, угловой скорости — радиан в секунду.  [c.15]

Емкость резервуара принимается в зависимости от количества масла, подаваемого в единицу времени к узлам трения, и колеблется в пределах 20—40-кратной производительности системы (насоса) в 1 мин. Так, например, в металлургической промышленно1сти для смазки подшипников скольжения электрических машин и подшипников жидкостного трения емкость резервуара  [c.59]


Физический смысл найденных таким путем / j, и (dljdN) можно интерпретировать следующим образом. Тепло, уносимое в единицу времени с катода за счет прохождения электрического тока через ЭГЭ (электронное охлаждение), обозначим Чтобы получить количество тепла, приходящееся в среднем на один электрон, разделим на ток ЭГЭ /3 3=  [c.199]


Смотреть страницы где упоминается термин Единицы временно электрические : [c.115]    [c.355]    [c.164]    [c.21]    [c.15]    [c.23]    [c.165]    [c.192]    [c.72]    [c.262]    [c.117]    [c.287]    [c.25]   
Теплотехнический справочник том 1 издание 2 (1975) -- [ c.8 , c.9 ]



ПОИСК



Ось временная

Электрические единицы



© 2025 Mash-xxl.info Реклама на сайте