Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Томсона теплота

Таким образом, второй закон термодинамики можно сформулировать в виде следующего утверждения Вечный двигатель второго рода невозможен . В более расшифрованном виде эту формулировку в 1851 г. дал В. Томсон Невозможна периодически действующая тепловая машина, единственным результатом действия которой было бы получение работы за счет отнятия теплоты от некоторого источника .  [c.22]

Используя обратный цикл Карно, рассмотрим еще одну формулировку второго закона термодинамики, которую в то же время, что и В. Томсон, предложил Р. Клаузиус теплота не может самопроизвольно (без компенсации) переходить от тел с более низкой к телам с более высокой температурой.  [c.26]


Эта формулировка интуитивно следует из нашего повседневного опыта, который показывает, что самопроизвольно теплота переходит только от тел с более высокой к телам с более низкой температурой, а не наоборот. Можно доказать, что формулировка Р. Клаузиуса эквивалентна формулировке В. Томсона.  [c.26]

Одновременно с Клаузиусом в 1851 г. Томсоном была высказана другая формулировка второго закона термодинамики, из которой следует, что не вся теплота, полученная в тепловом двигателе от источника теплоты, может перейти в работу, а только некоторая ее часть. Часть теплоты должна перейти в холодильник.  [c.108]

Разность между теплотами Томсона для двух металлов равна  [c.668]

Эффект Томсона. При прохождении электрического тока в проводнике с градиентом температуры помимо джоулевой теплоты выделяется добавочное количество теплоты (теплота Томсона), пропорциональное градиенту температуры и силе тока.  [c.22]

Количество теплоты, дополнительно выделяющееся в проводнике вследствие температурной неоднородности, называется теплотой Томсона, а само явление — эффектом Томсона. Феноменологически эта теплота равна  [c.26]

Устройство, в результате действия которого периодически производилась бы положительная работа только за счет охлаждения одного тела, без каких-либо других изменений в телах, называется вечным двигателем второго рода Томсона — Планка. Пользуясь обычными системами, невозможно осуществить вечный двигатель второго рода Томсона — Планка, но при наличии спиновых систем такой двигатель вполне возможен. Однако устройство, которое бы непрерывно превращало в работу теплоту какого-либо тела без компенсации — вечный двигатель второго рода, невозможно ни в случае обычных, ни в случае спиновых систем . При этом если для обь Чных систем предложение  [c.53]

Так как температура теплоотдатчика больше, чем теплоприемника, то Т >Т2, T2/Tf >l и, следовательно, Г)<0. Это означает, что при отрицательной абсолютной температуре, для того чтобы теплоту отнять от горячего тела и передать холодному, необходимо затратить работу. При этом, согласно первому началу, холодному телу сообщается больше теплоты, чем отнято у горячего на совершенную работу. Когда такой двигатель действует в противоположном направлении, т. е. выполняет роль холодильной машины, то при переносе теплоты от холодного тела к горячему им производится работа. Если потом с помощью теплового контакта обоих тел позволить перейти теплоте от горячего тела к холодному, то получим периодически работающий Двигатель, который, не вызывая никаких изменений в окружающей среде, производит работу за счет теплоты одного (холодного ) тела. Как видим, в области отрицательных абсолютных температур можно осуществить вечный двигатель второго рода Томсона — Планка.  [c.146]


Первый член правой части представляет собой выделяющуюся за единицу времени в единице массы проводника теплоту, обусловленную теплопроводностью третий член — джоулеву теплоту. Второй член характеризует теплоту Томсона Qp — дополнительное количество теплоты, выделяющееся при прохождении электрического тока по термически неоднородному проводнику. Теплота Томсона обусловлена совместным действием теплопроводности и электропроводности и определяется по формуле  [c.359]

Эффект Томсона заключается в обратимом выделении (или поглощении) теплоты в однородном проводнике, по которому протекает электрический ток, при одновременном наличии параллельного току градиента температуры  [c.560]

Эффект Томсона состоит в том, что при прохождении электрического тока в термически неоднородной системе, кроме дн<оу-лева тепла, выделяется дополнительное количество теплоты — теплота Томсона.  [c.201]

Термодинамика — наука, изучающая самые разнообразные явления природы, сопровождающиеся передачей или превращениями энергии в различных физических, химических, механических и других процессах. Термодинамика как наука сложилась в середине XIX в., когда в связи с широким развитием и использованием тепловых машин возникла острая необходимость в изучении закономерностей превращения теплоты в работу, создании теории тепловых машин, используемой для проектирования двигателей внутреннего сгорания, паровых турбин, холодильных установок и т. д. Поэтому основное содержание термодинамики прошлого столетия — изучение свойств газов и паров, исследование циклов тепловых машин с точки зрения повышения их к. п. д. В силу этого основным методом термодинамики XIX в. был метод круговых процессов. С этим этапом развития термодинамики связаны прежде всего имена ее основателей С. Карно, Б. Клапейрона, Р. Майера, Д. Джоуля, В. Томсона (Кельвина), Р. Клаузиуса, Г. И. Гесса и др.  [c.4]

Теплоту какого-либо тела невозможно превратить в работу, не производя никакого другого действия, кроме охлаждения этого тела А (В. Томсон)  [c.71]

Количество выделяющейся в неравномерно нагретом проводнике теплоты при прохождении электрического тока изменяется по сравнению с тем количеством теплоты, которое выделяется при отсутствии тока (эффект Томсона), В единице объема проводника за единицу времени выделяется количество теплоты Q, равное —div q. Взяв дивергенцию от обеих частей уравнения (2.122), учитывая,  [c.172]

Третий член обращается в нуль при / = О, т. е. связан с термоэлектрическими эффектами и представляет собой теплоту Томсона Qt. Так как проводник по составу однородный, то изменение величины У(,р/о происходит только вследствие изменения температуры по длине проводника, т. е.  [c.173]

В qi входит также теплота Томсона qr, обусловленная наличием градиента температуры в полупроводниковых стержнях. Теплота Томсона представляет собой теплоту, выделяющуюся при наличии температурного градиента  [c.577]

Теплота Томсона Qт пропорциональна плотности тока J, времени I и перепаду температур вдоль полупроводника (Г - ТД  [c.75]

Приведенные ранее две формулировки второго закона термодинамики самым тесным образом связаны с понятием необратимости. Действительно, формулировка Томсона — Планка накладывает запрет на двигатель, который полностью превращает в работу теплоту, взятую от горячего источника. Нарушение такого запрета равносильно существованию обратного процесса для самопроизвольного прямого процесса превращения работы в теплоту, т. е. обратимости последнего процесса. Формулировка Клаузиуса накладывает запрет на обратный процесс переноса теплоты, т. е. на обратимость обычного прямого переноса теплоты — самопроизвольного процесса. Таким образом, обе формулировки запрещают обратимость для самопроизвольного процесса.  [c.48]

Итак, осуществление обратного цикла без затраты работы извне невозможно. Эта особенность теплоты является одной из формулировок второго закона термодинамики, которая гласит теплота не может переходить от холодного тела к более нагретому сама собой даровым процессом (без компенсации). Эта формулировка принадлежит Ю. Клаузиусу (1850). Одновременно с ним У. Томсон дал иную формулировку второго закона, идентичную по содержанию, но отличную по форме теплота наиболее холодного тела в данной системе не может служить источником работы.  [c.64]


Термический к.п.д. цикла Карно при = равен нулю. Это положение, известное как постулат Томсона, указывает на то, что невозможно превращение теплоты в работу, если все тела системы имеют одинаковую температуру, т. е. если они находятся в тепловом равновесии.  [c.109]

Что касается формулировки второго начала термодинамики в форме Томсона— Планка, то она перестает быть справедливой при Т<0, так как в области отрицательных температур можно осуществить вечный двигатель второго рода в смысле Томсона—Планка," т. е, такой, который производил бы работу только за счет охлаждения одного тела, без каких-либо изменений в других телах. Это ясно из рассмотрения работы двигателя Карно при Т<0 (рис. 3-23) . В случае Т<0 термический к. п. д. цикла 111 будет отрицателен (поскольку 7 2/7 i>l) и соответственно q2 > q . Это значит, что полезная работа будет положительной, если 9i<0, а дг>0, причем цикл, конечно, должен осуществляться по часовой стрелке. Таким образом, цикл двигателя Карно в области отрицательных температур характеризуется отводом от нижнего источника тепла (Тг<Т ) тепла дг и передачей верхнему источнику тепла qi=l—qi, или 9i = l92 —1 -Поскольку с помощью теплового контакта между источниками тепла все количество тепла может быть передано от верхнего источника к нижнему, в результате цикла может быть произведена работа за счет теплоты одного тела (нижнего источника тепла) без каких-либо изменений в окружающих телах.  [c.97]

Это соотношение называется первым соотношение.м Томсона. Теплота Томсона может быть положительной и отрицательной в зависимости от знака (/, gradT). При изменении направления или только /, или только grad Т на противоположное величина <7г меняет знак. По этой причине эффект Томсона иногда называют обратимым. Необходимо, однако, иметь в виду, что эта обратимость не имеет никакого отношения к тому понятию обратимости, которое вводится на основании второго начала термодинамики. В этом термодинамическом понимании обратимости и необратимости явление Томсона является необратимым, так как представляет собой часть процесса, неразрывно связанного с такими необратимыми явлениями, как теплопроводность и выделение теплоты.  [c.26]

Следовательно, для получения работы необходимо иметь источник теплоты с высокой температурой, или теплоотдатчик, и источник теплоты с низкой температурой, или теплоприемник (холодильник). Кроме того, постулат Томсона показывает, что построить вечный двигатель, который бы создавал работу за счет использования только одной внутренней энергии морей, океанов, воздуха не представляется возможным. Это положение можно формулировать как второй закон термодинамики Осущесгвление вечного двигателя второго рода невозможно (Оствальд).  [c.108]

Одной из физических причин возникновения конкуренции может служить следствие уменьшения вероятности присоединения частиц к кластерам и наступление момента недостаточности количества выделенной при этом системой теплоты для выполнения принципа взаимности Онзагера или принцип противодействия. Принцип взаимности Онзагера является важным положением теории неравновесных процессов, по которому в результате действия на систему одной какой-либо внешней силы в системе появляются внутренние силы, направленные на компенсацию действия внешней силы. Так, например, наличие в газовой смеси температурного градиента ведет к образованию в системе градиента концентрации (термодиффузия, эффект Соре) и градиента давления, которые стремятся сгладить температурный градиент. Алалогичным образом наложение температурного градиента на проводник, по которому течет электрический ток, вызывает появление дополнительного градиента потенциала (явление Томсона).  [c.90]

Калорическое уравнение состояния идеального газа можно установить исходя из опытов Гей-Люссака и Джоуля — Томсона. Согласно этим опытам, при расширении разреженного газа в пустоту без притока теплоты (5Q = 0) его температура не изменяется. Отсюда следует закон Джоуля, энергия идеального газа, находящегося при постоянной температуре, не зависит от занимаемого им объема Действительно, поскольку при таком расширении bQ = 0, 5Ж=0 и, следовательно, по первому началу, dJ7=0, то при dr=0 (согласно опытам Гей-Люссака) из уравнения dU= 8U/8T)ydT+(8U/dV)jdV=0 получаем (8UI8V)t = 0. Поэтому для идеального газа  [c.41]

Наблюдения за работой паровых машин показали неравноценность превращения теплоты в механическую работу и обратго. Эти наблюдения привели гениального французского инженера Сади Карно к опубликованию в 1824 г. труда Размышление о движущей силе огня и о машинах, способных развивать эту силу . В этой работе С. Карно изложил основы второго закона термодинамики, окончательно установленного в 1850 г. Клаузиусом и Томсоном. Строго систематически второй закон термодинамики был обоснован Л. Больцманом, М. Смолуховским, профессором Киевского университета Н. Н. Шиллером.  [c.7]

После Карно обоснованием второго начала термодинамики занимались Тсмсон и Клаузиус. Томсон сформулировал второе начало термодинамики в виде утверждения о невозможности осуществления теплового двигателя с одним единственным источником теплоты, т. е. такой машины, которая путем охлаждения моря или земли производила бы механическую работу в любом количестве, вплоть до исчерпания теплоты моря и суши и в конце концов всего материального мира. Ему же принадлежит открытие термодинамической шкалы температур. Клаузиус исходил из идей Карно и придал выводам последнего большую общность и строгость с учетом эквивалентности тепла и работы, т. е. окончательно освободил термодинамику от гипотезы о теплороде. Исторической заслугой Клаузиуса является формулировка второго начала термодинамики в виде следующего утверждения теплота сама собой не может переходить от тела холодного телу горячему. Позже он дал более расширенную формулировку второе начало гласит, что все совершающиеся в природе превращения в определенном направлении, которое принято в качестве положительного, могут происходить сами собой, т. е. без ксмпенсации, но в обратном, т. е. отрицательном, направлении они могут происходить только при условии, если одновременно происходят компенсирующие процессы. Далее Клаузиус вывел на основе этого принципа особую функцию состояния — энтропию. С помощью этого нового понятия Клаузиус придал второму началу термодинамики форму закона возрастания энтропии изолированной системы. Этот закон, по мнению Клаузиуса, должен был иметь силу для всей Вселенной, что оказалось неправомерной, а потому и неверной для всей Вселенной экстраполяцией второго начала термодинамики.  [c.154]


Иногда вытекающее из основного уравнения (2.99) уменьшение полезной внешней работы адиабатически изолированной системы с возрастанием энтропии системы из-за необратимости происходящих в ней реальных процессов связывают с якобы действующей в природе тенденцией всех процессов приводить к обесцениванию или деградации энергии. Согласно этой точке зрения, во Вселенной, которая рассматривается как изолированная система, с течением времени энтропия возрастает и вследствие этого уменьшается возможность йревращения теплоты в работу, или, другими словами, происходит деградация энергии. В результате этого Вселенная в конце концов должна достигнуть состояния абсолютного теплового равновесия ( тепловой смерти по Клаузиусу и Томсону), при котором всякие процессы в ней прекратятся, а превращения энергии станут невозможными.  [c.156]

Теплота Томсона Qj- может иметь как положительный, так и отрицательный знаки в зависимости от знака скалярного произведения / и grad Г при изменении направления тока или при изменении знака grad Т теплота Отменяет свой знак на противоположный.  [c.360]

Зарождение технической термодинамики было связано с изобретением в конце XVIII в. паровой машины и изучением условий превращения теплоты в механическую работу. Основы технической термодинамики были заложены французским физиком и инженером Сади Карно (1796—1832), который первый осуществил термодинамическое исследование тепловых двигателей и указал пути повышения их экономичности. В развитие технической термодинамики огромный вклад внесли крупнейшие ученые Р. Майер, Дж. Джоуль, Г. Гельмгольц, С. Карно, Р. Клаузиус, В. Томсон (Кельвин), Л. Больцман. Их исследования обусловили установление первого и второго начал термодинамики, что создало основу для теоретического изучения и практического применения процессов превращения теплоты в работу. Помимо указзЕгных ученых в развитии термодинамики участвовали Д. И. Менделеев, Г. В. Рихман, Г. Ленц, Ф, Бошнякович, М. П. Вукалович и многие другие.  [c.5]

Из выражения (2.125) видно, что теплота Томсона изменяет свой знак при изменений направления тпка или при изменении знака grad Т величина Qr пропорции-нальна первой степени плотности тока и grad Т.  [c.173]

Эффект Томсона состоит в том, что при пропускании тока через проводник, вдоль которого имеется градиент температуры, в дополнение к теплоте Джсуля в объеме проводника в зависимости от направления тока выделяется или поглощается некоторое количество тепла. Эффект Томсона в полупроводнике объясняется тем, что при наличии в нем градиента температуры возникает термо-э. д. с. Если направление напряженности возникшего электрического поля совпадает с направлением напряженности внешнего поля, то не вся энергия, поддерживающая ток, обеспечивается внешним источником, часть работы совершается за счет тепловой энергии самого полупроводника, в результате чего он охлаждается.  [c.75]

Дру1 ая широко известная формулировка второго закона термодинамики звучит так теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому (Р. Клаузиус, 1850 г.). Несмотря на внешнее различие формулировок Томсона-—Планка и Клаузиуса, они эквивалентны. Эквивалентность формулировок означает, что каждая из них является следствием другой эквивалентность можно доказать и другим путем при нарушении одной формулировки должна нарушаться и другая (и наоборот). Воспользуемся вторым способом. Пусть имеется тепловой двигатель, отбирающий <71 = 100 кДж/кг от горячего источника, превращающий /ц=40 кДж/кг в работу и отдающий у = = 60 кДж/кг холодному источнику. Нарущим формулировку Клаузиуса, передав 60 кДж/кг от холодного источника к горячему самопроизвольно (без помощи из окрулсающей среды). После такой передачи оказывается, что горячий источник отдал 100—60=40 кДж/кг, которые тепловой двигатель полностью превратил в работу. Это — нарушение формулировки Томсона — Планка. Легко показать также, что при нарушении формулировки о принципе устройства теплового двигателя нарушается и формулировка о направлении самопроизвольного теплового потока.  [c.44]


Смотреть страницы где упоминается термин Томсона теплота : [c.668]    [c.357]    [c.604]    [c.60]    [c.578]    [c.53]    [c.54]    [c.7]    [c.105]    [c.28]    [c.6]   
Теория твёрдого тела (1980) -- [ c.225 ]



ПОИСК



Томсон



© 2025 Mash-xxl.info Реклама на сайте