Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Азот жидкий, свойства

Физико-химические свойства 3 — 302 Азот жидкий — Теплоёмкость удельная средняя 1 (1-я)—445  [c.11]

В соответствии с поведением в магнитном поле различают несколько классов веществ. Вещества с отрицательной магнитной восприимчивостью (т. е. коэффициентом пропорциональности между намагниченностью образца и напряженностью внешнего магнитного поля) называют диамагнетиками. Отвечающее этому знаку восприимчивости выталкивание вещества из магнитного поля обусловлено экранирующим влиянием замкнутых внутренних электронных оболочек. Если вещество содержит постоянные магнитные диполи, его называют парамагнетиком, этим свойством обладают, например, вещества, атомы или молекулы которых имеют неспаренные электроны (свободные атомы натрия, окись азота, жидкий кислород, свободные радикалы, атомы или ионы с частично заполненными внутренними электронными оболочками, как, например, у переходных металлов). Магнитная восприимчивость парамагнетиков положительна, что обусловлено  [c.80]


Под цианированием понимают процесс одновременного насыщения стали углеродом и азотом. Ведение процесса цианирования в расплавленных слоях (жидких ваннах) обеспечивает большую производительность процесса. Особые свойства стали, поверхностный слой которой насыщен одновременно азотом и углеродом, обусловили внедрение этого процесса в промышленность.  [c.336]

Металлы, кристаллизующиеся в системе куба с центрированными гранями (медь, алюминий, никель, серебро, золото и др.), не обнаруживают хладноломкости ни при каком понижении температуры. Например, алюминий при температуре жидкого азота (—196 С) увеличивает прочность приблизительно в 2 раза, увеличивая одновременно относительное удлинение в 4 раза. Аналогично ведут себя медь и никель. Многие сплавы алюминия, меди, а также некоторые стали не обладают свойством хладноломкости.  [c.118]

Водород и оксид углерода обладают ценными свойствами энергоносителей и химического сырья. Они могут использоваться для повыщения эффективности традиционных производств, а также для создания и развития новых технологических процессов и водородной энергетики. Глубокий холод жидких водорода и оксида углерода используется для сжижения воздуха с последующим его разделением на кислород и азот. Это исключает (в основной части) традиционный расход электроэнергии на получение соответствующего количества кислорода и азота. Азот вместе с водородом и оксидом углерода может быть направлен для синтеза аммиака, карбамида и других продуктов связанного азота. В результате из процесса исключается природный газ. Кислород используется для традиционной интенсификации процесса в доменном, конвертерном и других производствах черной и цветной металлургии.  [c.398]

Основными металлургическими дефектами, ухудшающими свойства стали, являются сернистые соединения (сульфиды), оксиды, шлаковые включения, различные газовые пузыри, рассредоточенная усадочная рыхлость (мелкие поры, образующиеся между зернами вследствие нехватки жидкого металла). Попавшие в сталь и растворенные в ней азот, водород и кислород также ухудшают ее механические свойства.  [c.28]

Изоляция целого ряда электротехнического и радиоэлектронного оборудования должна сохранять свои свойства при охлаждении до — (бОн-70) °С, а в ряде случаев и при температуре жидкого азота (—196°С), водорода (—252 С) и гелия (—268,7 С). При низких температурах электрические свойства диэлектриков, как  [c.190]


Как правило, с применением автоклавов изготовляют отливки из сплавов на основе алюминия, магния, меди и титана. Но известны работы [58] по изучению влияния газового давления в пределах О— 8 МН/м на структуру и механические свойства стали 40. Давление на зеркало жидкой стали в закрытой изложнице производилось азотом из баллона через газоотводящую трубку, снабженную прямым и обратным клапанами и манометром для определения рабочего давления газа.  [c.64]

Закалка в жидком азоте также устраняет межкристаллитную сегрегацию закаленные образцы при содержании серы до 0,001 % обладают высокими механическими свойствами.  [c.158]

Диэлектрические свойства жидких газов высоки е = 1,05- 1,4 электрическая прочность = 300 335 кв см. Таким образом, жидкий гелий, водород, неон, аргон, азот являются хорошими диэлектриками и могут применяться в качестве среды для испытания.  [c.51]

Магнитные свойства определяли при комнатной температуре (300 К) и при температурах хладагентов смеси сухого льда и спирта — 194,6 К, жидкого азота — 77 К, жидкого гелия — 4,2 К. В каждом случае образец полностью погружали в хладагент, налитый в специальный сосуд, и выдерживали определенное время для приобретения образцом температуры охлаждающей среды. Комнатную температуру замеряли ртутным термометром, температуру смеси сухого льда со спиртом — спиртовым термометром. Температуры жидкого азота и гелия не замеряли специально, потому что считается, что они близки к точкам кипения этих хладагентов.  [c.354]

Сущность этого способа заключается в том, что запрессовываемая деталь опускается в бачок с жидким азотом. Здесь она охлаждается, в течение 8—10 мин. до температуры —180°, а затем вставляется в отверстие запрессовываемой детали. Исследования показали, что ни структура, ей механические свойства материала запрессовываемой детали не меняются от охлаждения. Этот метод сокращает затраты труда в 2—3 раза по сравнению со старой технологией.  [c.27]

Случаи поломок частей машин, работающих при пониженных температурах, значительно чаще, чем при работе в условиях нормальных температур. Интенсивное развитие холодильного дела и производство сжиженных газов (жидкий воздух, кислород, азот и др.), а также работа конструкций и машин в зимних условиях или при низких температурах северных широт потребовали изучения и контроля механических свойств металла при низких температурах.  [c.66]

По сравнению с разработанным несколько позже мартеновским способом производства стали конвертерный процесс отличался значительно более высокой производительностью. Однако он имел и существенные недостатки. При конвертерном процессе нельзя было в значительных количествах перерабатывать твердый скрап, т. е. вторичный металл,— сырье в виде отходов производства и стального лома, которое во все большем количестве накапливалось в хозяйстве развитых стран. Кроме того, интенсивная продувка жидкого металла в конвертере сжатым воздухом вызывала повышенную концентрацию азота в металле. К концу процесса бессемерования в стали обычно содержалось 0,012—0,015% азота. Это значительно превышало содержание азота в мартеновской стали. То же самое можно сказать и о концентрации кислорода. Конвертерная сталь содержала его большее количество, чем мартеновская. Увеличенное содержание в металле азота, кислорода, так же как фосфора и серы, ухудшало его пластические свойства, повышало хрупкость металла в процессе его последующей обработки давлением и при эксплуатации изделий из такого металла [3, с. 153, 154]. В результате этого уже в последнее десятилетие XIX в. более интенсивно развивался мартеновский способ производства стали, а в дальнейшем также электрометаллургические процессы. Конвертерный способ выплавки стали надолго уступил им первенство.  [c.119]

Изобретателям аплодируют редко, хотя решаемые ими технические задачи, непрерывно усложняясь, напоминают иногда эволюцию цирковых номеров. С такой точки зрения интересно взглянуть на развитие конструкций насосов. Сначала они служили только для перекачки воды — жидкости податливой, неагрессивной. Это была предельно простая задача. Потом появились насосы для перекачки керосина, бензина, кислот, различных летучих и легко воспламеняющихся ядовитых и агрессивных составов. Понадобились взрывобезопасные конструкции, снабженные нейтрализаторами статического электричества, герметическими уплотнениями, стойкой футеровкой и т. д. По мере развития техники производственники сталкивались со все новыми жидкостями невероятно разнообразных свойств, причем одновременно расширялись диапазоны всех рабочих параметров — давлений, скоростей, температур, и всякий раз в технические требования к насосам приходилось включать все новые условия. Без преувеличения можно сказать, что каждый шаг технического прогресса обязательно сопровождается появлением насосов принципиально новых типов. Недаром эти устройства, казалось бы, очень узкого назначения патентоведы выделили в отдельный 59-й класс. Так, с развитием космонавтики появились насосы для перекачки сжиженного азота, водорода и кислорода при температурах порядка двухсот градусов холода в условиях невесомости и космического вакуума. Техника сверхпроводимости вызвала к жизни насосы для жидкого гелия, работающие вообще близ абсолютного нуля, радиотехника и телемеханика стимулировали появление аппаратов, способных вылавливать чуть не отдельные молекулы газа, ядерная энергетика породила насосы для горячих радиоактивных субстанций. Можно еще упомянуть насосы для абразивных жидкостей, которые обычную конструкцию съедают за несколько часов, насосы для вязких нефтей, битумов и лечебных грязей, насосы, гасящие пену, и т. д. и т. п.— имя им легион  [c.163]


Присутствие азота в жидком металле ухудшает антикоррозионные свойства тугоплавких конструкционных материалов.  [c.293]

Попадание жидкого азота и других хла доносителей иа открытые участки кожи может вызвать их тяжелое обмораживание, поэтому рабочий персонал должен носить рукавицы, очки и другие средства индивидуальной защиты. Захваты и перенос охлажденных деталей производится клещами с достаточно длинными рукоятками. Следует предупреждать попадание масла и других легко окисляющихся материалов в жидкий воздух или жидкий кислород, так как они приобретают при этом взрывчатые свойства.  [c.397]

Выбор сушильного агента проводят на основе комплексного исследования технико-экономических показателей сушильной установки, ее технологической схемы и связи ее с тепловой схемой предприятия. Воздух как сушильный агент применяют наиболее часто в тех случаях, когда температура сушильного агента не превышает 500 °С, а присутствие кислорода в нем не влияет на свойства сушимого материала. Свойства воздуха приведены в табл. 7.16 в кн. 1 настоящей серии, а также в [23, 40]. Топочные (дымовые) газы используют для сушки материалов при начальной температуре сушильного агента (200—1200°С), причем только в тех случаях, когда газовые и твердые компоненты дыма не оказывают сушественного влияния на качественные показатели продукта. Для их получения сооружают специальные топочные устройства, в которых сжигают газообразное и жидкое топливо, отходы технологического производства (древесную стружку, солому, подсолнечную лузгу и пр.), или используют дымовые газы из топок производственных котельных, из котлов ТЭЦ, нагревательных, плавильных и обжиговых печей. Азот (см. табл. 7.20 в кн. 1 настоящей серии) как сушильный агент применяют в тех случаях, когда сушимый материал может окисляться или является взрывоопасным или взрывоопасна смесь воздуха и паров испаряемой из материала жидкости. Азот получают в специальных воздухоразделительных установках (см. 3.4).  [c.179]

Кратеры. В зоне сварочной дуги поверхность жидкой ванны получается вогнутой, поэтому при обрыве дуги в шве остается углубление (кратер). Кратеры понижают прочность шва, так как уменьшают его сечение. Металл кратера сильнее насыщен кислородом и азотом, чем металл остальной части шва, и поэтому обладает пониженными механическими свойствами.  [c.358]

Термодинамические свойства жидкого в состоянии насыщения (6 азота Тершодинамические свойства жидкого аргона в состоянии насыщения G]  [c.245]

Польские исследователи во главе с Вроблевским и Ольшевским [65, 66] впервые применили этилен и использовали трехкаскадную схему с конечным этиленовым испарителем при температуре около 125° К, нрн которой был сконденсирован сжатый кислород. Им удалось получить жидкий кислород и азот в 1 оличествах, достаточных для исследования свойств этих жидкостей. Дьюар [67, 68] опубликовал краткие сведения об ожижителе кислорода,  [c.39]

Рис. 7.8.8. Обобщенная зависимость коэ )фиционта теплоотдачи Р от физических свойств жидкости и скорости вдува прп барботаже (вода, водоглицериновые растворы) и кипении (вода, натрий, калий, цезий, этанол, бензол, жидкий азот и яшдкий гелий, фрсюн) в виде зависимости параметра Рис. 7.8.8. Обобщенная зависимость коэ )фиционта теплоотдачи Р от <a href="/info/27474">физических свойств жидкости</a> и скорости вдува прп барботаже (вода, водоглицериновые растворы) и кипении (вода, натрий, калий, цезий, этанол, бензол, <a href="/info/63470">жидкий азот</a> и яшдкий гелий, фрсюн) в виде зависимости параметра
Практический интерес представляет также большое снижение сопротивления некоторых металлов при низких температурах, но лежащих выше температур, соответствующих возникновению сверхпроводимости. Это явление получило название гиперпроводимости. Практически интересными гиперпроводниками являются алюминий, имеющий при 20 К (температура жидкого водорода) удельное сопротивление 0,05 нОм-м, и бериллий, имеющий при температуре 77 К (температура жидкого азота) удельное сопротивление несколько ниже 1 нОм-м. Отметим здесь некоторые особенности изоляции оборудования, предназначенного для работы при сверхнизких (криогенных) температурах. Как известно из физики диэлектриков, при понижении температуры теоретически электроизоляционные свойства должны улучшаться. Практически может возникнуть их ухудшение, в частности уменьшение электрической прочности, за счет появления трещин и чрезмерно большой хрупкости. Считается, что при криогенных температурах только часть синтетических полимеров сохраняет известную гибкость. В частности, к их числу относятся некоторые фторорганические, полиуретаны, полиимиды, полиэтилен-терефталат. Для работы н криогенных условиях пригодны целлюлозные волокнистые материалы, в том числе пропитанные ожиженными газами, например водородом, азотом.  [c.250]

Таблица 98. Механические свойства мартеновской стали (0,12о/о С) в зависимости от времени выдержки и температуры. Нагрев IISO , охлаждение в 1,5%-ном водном растворе КОН с дальнейшим погружением в жидкий азот на 30 мин для превращения остаточного аустенита в мартенсит). Таблица 98. Механические свойства <a href="/info/63766">мартеновской стали</a> (0,12о/о С) в зависимости от времени выдержки и температуры. Нагрев IISO , охлаждение в 1,5%-ном <a href="/info/48027">водном растворе</a> КОН с дальнейшим погружением в <a href="/info/63470">жидкий азот</a> на 30 мин для превращения остаточного аустенита в мартенсит).
О применении органосиликатных материалов в качестве изоляции термоэлектродных проводов микротермопар сообщалось ранее [1]. При толщине слоя покрытия 15—25 мк органосиликатные материалы П-2, П-4 и другие позволяли изолировать термоэлектродные провода микротермопар для службы при температурах до 1000° С [2]. Такие покрытия обладали высокой механической прочностью, эластичностью и высокими электроизоляционными свойствами (см. таблицу). Отмечалось, что покрытия из органосиликатного материала П-4 целесообразно применять для проводов из хромоникелевых сплавов в комбинации с покрытиями из алунда. Комбинированное покрытие наносилось на термо-электродные провода микротермопар длиной 6- -10 м при малом (менее 1 мм) поперечном сечении защитного чехла для ядерных реакторов. Изготовленные микротермопары обладали хорошей стабильностью показаний в широком интервале температур в различных средах (воздух, азот, воздух и углерод, вода, жидкие металлы и другие).  [c.275]


На основе бескислородных тугоплавких соединений кремния Мо312, 81С (наполнитель) и бесщелочного борокремнеземного стекла (связка) созданы покрытия, эффективно защищающие графит и борсодержащие материалы от окисления в воздухе при температурах до 1200—1600°. Показано, что на процесс формирования и физико-химические свойства покрытий оказывает влияние природа наполнителя, связки, защищаемого материала, а также газовая среда. Покрытия способны формироваться в воздушной и инертной средах. Наряду с высокой жаростойкостью покрытия отличаются химической устойчивостью в контакте с жаропрочными сплавами, в газовых (водород, азот, перегретые пары серы и др.) и жидких (кипящие водные растворы НС1, НаЗО , HN0з) средах. Библ. — 9 назв., табл. — 4, рис. — 5.  [c.344]

Научные исследования и экспериментальные работы дали возможность разработать проект полупромышленной криогенной кабельной линии длиной 1 км. Эта сверхпроводящая линия будет сооружена на Кожуховской подстанции Мосэнерго в текущей пятилетке. Конструктивно эта кабельная линия представляет собой жесткую трубную систему, собранную из заранее смонтированных секций. Токоведущая часть состоит из медных труб с внешним диаметром 112 и 80 мм, на которых с внешней и внутренней поверхностях наносится в виде тонкой пленки сверхпроводник из станид-ниобия толщиной 12 мкм. Охлаждающий агент первичного контура — гелий, охлажденный до температуры 7,2 К во вторичном (после вакуумной рубашки) контуре циркулирует жидкий азот. Напряжение линии — 10,5 кВ, ток 10 кА. Исследованиями были установлены высокие изоляционные свойства жидкого гелия. Наиболее оптимальное значение пробивного напряжения, равное 230—250 кВ/см, имеет место при плотности гелия в пределах 0,03 г/см .  [c.249]

Механические свойства при растяжении сплава Fe—12 Ni—0,25 Ti, обработанного по указанным выше режимам 1—4, определяли при 77 и 6 К. Испытания проводили на машине РТнстрон, оборудованной криостатом либо с жидким азотом (77 К), либо с жидким гелием (6 К). Образцы имели диаметр рабочей части 3,1 мм, длину расчет-  [c.347]

Появление спутниковой, тропосферной, космической связи и глобального радио- и телевещания на сверхвысоких частотах, сверхдальней радиолокации, радиоастрономии, радиосиектросконии потребовало создания радиоприемных устройств с ничтожно малым уровнем шума. Новые возможности в этом отношении открылись перед радиотехникой в связи с достижениями в области изучения свойств различных веществ при глубоком их охлаждении и в связи с освоением новых методов построения радиоприемных схем. В результате этого в 50-х годах появились идеи создания параметрических и квантовых парамагнитных усилителей. Такие схемы обычно охлаждают с помощью жидкого азота, а в последнее время — жидкого гелия. Современные параметрические усилительные схемы осуществляются на основе использования для изменения параметров схемы диодов, ферритов, полупроводников и других нелинейных элементов. Квантовые парамагнитные усилители в настоящее время строятся на двух нринцинах. В первом из них взаимодействие волны слабого сигнала с усиливающим парамагнитным веществом происходит в объемном резонаторе (усилители резонаторпого тина), а во втором — в замедляющих волноводах (усилители бегущей волны). Все эти устройства мало похожи на привычные радиоприемники и пока еще достаточно сложны в осуществлении и эксплуатации, но зато их чувствительность может быть доведена до 10 вт.  [c.380]

Сравнивая свойства жидкой четырехокиси азота, например, с водой, можно отметить следующие особенности N2O4 большую плотность, равную при нормальных условиях 1448 кг/м в несколько раз меньшие вязкость, теплопроводность, теплоемкость и теплоту испарения число Прандтля вдали от критической точки изменяется в довольно узких пределах (3,5—5,5).  [c.12]

Жидкая четырехокись азота—диссоциирующая жидкость, в которой до Тс Тщ, проходит лишь первая стадия реакции диссоциации N2045=i 2N02, что позволяет для обычных условий конвективного теплообмена использовать эффективные свойства, считая состояние жидкости химически равновесным. Поэтому нами с целью обобщения опытных данных были рассмотрены расчетные зависимости, составленные для газов и капельных жидкостей, в которых тем или иным способом учитывается влияние переменных физических свойств. В частности, была произведена обработка данных по формулам  [c.46]

Сочетание свойств в жидкой и паровой фазах че-тырехокиси азота снижает критическую скорость пара. Расчеты по зависимостям, приведенным в [5.1, 5.2, 6.12 и  [c.148]

Тонкий помол порошка до размеров частиц 10 мкм производят в шаровых и вихревых мельницах. В первом случае защитной средой является жидкость (спирт, толуол, бензол, гексан), а во втором — струя инертного газа (азот, аргон, гелий). Обычно размол в жидких средах дает лучшие результаты в отношении магнитных свойств порошка, оцениваемых значениями остаточной намагниченности РцМг, коэрцитивной силы по намагниченности и коэффициента выпуклости кривой размагничивания ЦдМ = (Я).  [c.89]

Энтальпия жидкой фазы N2O4 экспериментально определена в ИВТ АН СССР для области температур 10 — 195°С и давлений 25 — 300 бар [2.8]. В работе [2.10] была измерена скорость звука в газообразной четырехокиси азота в диапазоне 330—550 К и давлений 5 — 60 бар. Переносные свойства диссоциирующей четырехокиси азота экспериментально изучены в широкой области параметров состояния. Коэффициент динамической вязкости газообразной четырехокиси азота исследован в ИВТ АН СССР [2.11] при атмосферном давлении  [c.45]

Известно, что полимерные материалы изменяют свои физико-механические и фрикционные свойства при действии низких температур. Данные о влиянии низких температур на трение фрикционных материалов в литературе отсутствуют. Экспериментальные исследования проводили с фрикционными материалами типа 6КХ-1Б (на каучуковом связующем) и 7КФ-34 (каучук + смола) материал контрэлемента — серый чугун СЧ 15. Испытания проводили на машине трения типа МФТ-1 [11], которую оборудовали специальной криокамерой. Рабочее пространство криокамеры охлаждалось жидким азотом, который подавался из сосуда Дьюара, оборудованного устройством для автоматического регулирования температуры в змеевик, а затем в наружную кольцевую обечайку, расположенную вокруг узла трения. Температура воздуха, окружающего узел трения, понижалась до — 85 °С.  [c.240]

Исследованиями отмечено, что изменением литейной формы можно регулировать структурообразование поверхностного слоя металла отливки и получать заданные механические свойства. В зависимости от размерных параметров кристаллических решеток, электронной структуры и химической активности жидкого металла в условиях формирования отливки ее поверхностный слой насыщается кислородом, водородом, углеродом, азотом и другими элементами, содержащимися в облицовках и покрытиях форм. В результате протекания указанных процессов в поверхностном слое н на поверхности образуются новые структурные фазы, pesiio изменяющие природу и свойства отливок. Так, адсорбционные поверхностные плены могут играть роль пассив1[рующего элемента, когда отношение молекулярного  [c.11]


Дымовые газы представляют собой продукты сгорания органического топлива в печах или горелках. В зависимости от вида топлива (твердое, жидкое, газообразное) дымовые газы содержат углекислый газ, азот, кислород, водяные пары и химические соединения SO2, СО, N0, В сушильных установках, контактных аппаратах и установках погружного горения применяют дымовые газы, полученные при сжигании природного газа. Эти дымовые газы содержат мало агрессивных примесей и при температурах до 1000 °С оказывают умеренное коррозионное воздействие на углеродистые стали. Теплофизические свойства дымовых газов, полученных при сжигании природного газа среднего ссстава, приведены в табл. 2.9.  [c.100]

С болты следует изготовлять из высокопрочных легированных сталей. Тяжело нагруженные болты, предназначенные для использования при более низких температурах, должны изготовляться из коррозионно-стойких сталей переходного класса 07Х16Н6 и 1Х15Н4АМЗ-Ш. Эти стали наряду с высокой коррозионной стойкостью характеризуются высокими пластичностью и ударной вязкостью при очень низких температурах. Болты из стали 07Х16Н6, например, сохраняют высокие прочность и ударную вязкость (ан = 80. .. 95 Дж/см ) вплоть до == —253 и (температура жидкого азота) и могут длительно работать при = —196... 400 °С и кратковременно до 500 °С. Эти свойства особенно важны для болтов, используемых в космических аппаратах. В табл. 5.17 приведены механические характеристики отечественных сталей для изготовления болтов, работающих при низких температурах.  [c.174]

Аморфные сплавыуна основе железа при низких температурах (при температуре жидкого азота) становятся хрупкими и утрачивают вязкость, хотя скорости закалки, применяемые при их получении, достаточно высоки. Следовательно, при исследовании механических свойств аморфных металлов необходимо учитывать историю их получения.  [c.237]


Смотреть страницы где упоминается термин Азот жидкий, свойства : [c.447]    [c.118]    [c.270]    [c.6]    [c.12]    [c.91]    [c.462]    [c.213]    [c.14]    [c.18]    [c.296]   
Теплотехнический справочник том 1 издание 2 (1975) -- [ c.245 ]



ПОИСК



Азот

Калорические свойства жидкого азота

Термодинамические свойства жидкого азота Анализ экспериментальных данных о плотности жидкого азота

Термодинамические свойства жидкого азота в состоянии насыщения (по температурам)

Термодинамические свойства жидкого. азота в состоянии насыщения (по давлениям)



© 2025 Mash-xxl.info Реклама на сайте