Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкость разрушения ударная — Испытания

Когда изделие, которое можно представить в виде компактного образца для изучения ударной вязкости, подвергается действию растягивающих напряжений, может произойти хрупкое разрушение его в случае, если интенсивность напряжений достигает определенной величины, характерной для данного материала, а поверхность разрушения будет достаточно плоской. Интенсивность напряжений, при которой происходит разрущение образца, определяется напряжением а, приходящимся на единицу площади, и длиной трещины а, выражается в единицах fMH/M /2] и известна под названием вязкости разрушения К с)- Если уменьшить размеры образца или увеличить температуру его, материал образца будет переходить в состояние текучести, начиная от конца трещины, до того как произойдет его хрупкое разрушение, и на другой стороне появятся резко выраженные полосы сдвига. Для изучения вязкости разрушения ударно-вязких высококачественных сталей используют очень крупные образцы, но их довольно трудно получить и создать в них напряжения, достаточные для того, чтобы перенести полученные результаты на узлы реальных размеров, например, роторы турбин, сосуды высокого давления или паровой цилиндр. Некоторое приближение может быть сделано при нагружении образцов, маленьких для хрупкого разрушения, но достаточных для измерения скорости распространения трещины. Поэтому во многих случаях результаты испытаний на вязкость разрушения могут быть экстраполированы, но так как для большинства рассчитанных размеров трещин разрушение будет носить хрупкий характер, они могут быть использованы для оценки с достаточной степенью точности.  [c.44]


Определение надежности (испытание на удар). Для установления степени надежности материала необходимо определение сопротивления разрушению вязкому (Ор), хрупкому (Гв —7 н или Т ц) или вязкости разрушения (Ki ). Об определении Ki коротко говорилось ранее, об определении сопротивления разрушению при ударных испытаниях, получивших в особенности за последнее время широкое расиространение, скажем немного подробнее. Практически оказалось удобнее разрушать образец ударом при еш изгибе и фиксировать место разрушения надрезом).  [c.80]

Для проверки способности материала сопротивляться ударным нагрузкам применяют особый вид испытаний ударным изгибом — определение ударной вязкости надрезанных образцов. Эти испытания проводят на маятниковых копрах (рис. 593). На рис. 594 пока-ваны применяемый при испытании образец и направление удара бойка маятника. Разность высот положения маятника до и после удара позволяет вычислить работу А, израсходованную на разрушение образца.  [c.648]

Поскольку при быстром нагружении развитие пластических деформаций затруднено, главенствующим механизмом разрушения оказывается развитие трещин, и материал обостренно воспринимает местные повышенные напряжения. Это позволяет создать специальный метод испытания материала на чувствительность к хрупкому разрушению — так называемое испытание на ударную вязкость.  [c.84]

Для оценки сопротивления конструкционных материалов распространению трещины разработаны разнообразные методики [3, 37]. Наиболее употребительными из них являются испытание на ударную вязкость (по Шарпи) и определение коэффициента интенсивности напряжений Кс или интенсивности выделения энергии при разрушении G . С тем чтобы полнее охарактеризовать значение данных по вязкости разрушения и обеспечить лучшее их понимание, ниже кратко описаны соответствующие испытания и разъяснены факторы, влияющие на вязкость.  [c.267]

При ударном испытании по Шарпи определяют энергию, необходимую для разрушения путем изгиба образца с надрезом. Удар по образцу производят при помощи маятника с известной кинетической энергией, а величина энергии, затраченной маятником, может служить относительной характеристикой вязкости разрушения материала. Хотя на величину энергии маятника и геометрию образца разработаны стандарты, при испытании композитов они  [c.267]


К настояш,ему времени проведено много ударных испытаний для оценки вязкости материала или сопротивления разрушению. Наиболее обычные испытания — это определение анергии разрушения (по Изоду или Шарпи) довольно относительным способом. Недостаток этих методов состоит в их неспособности дать сведения, имеюш,ие физический смысл. На результаты оказывают влияние геометрия образца и способ осуществления эксперимента это приводит к серьезным трудностям при анализе результатов.  [c.322]

Для оценки вязкости разрушения, кроме ударных испытаний образцов Шарпи, использованы четыре других метода. Два из них динамические определение температуры нулевой пластичности (ТНП) методом падающего груза и динамические испытания на разрыв. Эти методы являются развитием динамических испытаний по Шарпи они относительно дешевы и несложны в интерпретации. Определение ТНП часто оговаривается в стандартах и является  [c.208]

Термообработка по режиму 1 позволяет получить высокую ударную вязкость при температуре жидкого азота (77 К). При обработке по режиму 2 сплав имеет высокую ударную вязкость вплоть до 6 К. Термообработка по режиму 3 также обеспечивает очень высокую ударную вязкость при 6 К, однако без промежуточной холодной деформации. После термообработки по режиму 4 сплав имеет очень мелкозернистую структуру (<1 мкм), при которой обладает очень высокой пластичностью при испытаниях на вязкость разрушения при 77 К.  [c.347]

Изучение влияния низких температур на прочностные и деформационные характеристики металлов представляет значительный интерес в связи с исследованием проблемы хрупкости. Склонность материала к хрупкому разрушению в настоящее время оценивается величиной ударной вязкости, определяемой энергией разрушения призматического образца с надрезом, или величиной критического коэффициента вязкости разрушения, определяемой по диаграмме растяжения образца с трещиной. Обе характеристики являются интегральными характеристиками материала и отражают совместное влияние скорости деформации, температуры, напряженного состояния и распределения деформаций по объему материала. Испытания на растяжение обеспечивают возможность изучения раздельного влияния скорости и температуры.  [c.129]

Механические свойства металла относятся к числу основных его служебных свойств и определяются главным образом испытаниями его на разрушение, ударную вязкость, твердость, усталость, ползучесть.  [c.89]

Под вязкостью металла обычно понимают его способность к поглощению механической энергии при постепенном увеличении пластической деформации вплоть до разрушения. Работу, затрачиваемую на разрушение образца при испытании динамической изгибающей нагрузкой, отнесенную к единице площади поперечного сечения образца в ослабленном надрезом месте, называют удельной ударной вязкостью a . Эта характеристика чувствительна к самым малым изменениям в структурном состоянии металла. Ударная вязкость уменьшается (иногда в несколько раз) при образовании хрупких прослоек по границам зерен или по внутренним поверхностям раздела в зернах, при наличии хрупких пластинчатых включений (например, графита) и при самом минимальном оплавлении легкоплавких составляющих по границам зерен.  [c.12]

Величина ударной вязкости КС определяется как отношение энергии, затраченной на разрушение образца при испытании на двухопорный ударный изгиб, к плош,ади его начального поперечного сечения в месте концентратора напряжений. Концентраторами напряжений в образцах для испытаний являются надрезы различной формы или нанесенная трещина усталости. В зависимости от вида концентратора напряжений ударную вязкость обозначают  [c.101]

Для оценки склонности материалов к хрупкому разрушению широко применяют испытания на ударный изгиб образцов с надрезом, в результате которых определяют ударную вязкость. Ударная вязкость оценивается работой, затраченной на ударный излом образца и отнесенной к площади его поперечного сечения в месте надреза.  [c.42]


Вязкость разрушения при плоской деформации для многих материалов также зависит от скорости нагружения. При ударном нагружении вязкость разрушения обычно называют динамической ударной вязкостью К, Для некоторых материалов, таких, например, как конструкционная сталь малой прочности, характерно непрерывное уменьшение вязкости разрушения с увеличением скорости нагружения [15] (см. рис. 15.24(a)). Хотя методы испытаний для определения значений Ки пока еще не стандартизованы, эта величина широко используется расчетчиками. Как упоминалось в гл. 8, статическая вязкость разрушения зависит от температуры. Динамическая ударная вязкость разрушения, как показано на рис. 15.24(6), также является функцией температуры возрастает с повышением температуры.  [c.534]

Низкие температуры могут проявляться в большей степени при ударных нагрузках (ударная вязкость) или при испытаниях крупных образцов с резкими концентраторами напряжений (характеристики вязкости разрушения).  [c.29]

Разнообразные и многочисленные конструкции сварных сосудов, применяемых в современной промышленности, изготовляют преимущественно из мягких углеродистых или слаболегированных сталей. Эти стали обладают хорошей пластичностью и свариваемостью (газгольдеры, барабаны паровых котлов, хранилища для жидких продуктов, химические реакторы, баллоны, крупные газовые и нефтяные трубы и др.). Расчет сварных сосудов, как правило, ограничивают условиями статической прочности или сопротивлением однократным ударным нагрузкам. Для оценки прочности крупных ответственных сварных сосудов в последние годы учитывают также характеристики хрупкой прочности (критическая температура хрупкости, вязкость разрушения Ки) и ДР-Во многих случаях сварные конструкции типа сосудов давления подвергаются в процессе эксплуатации циклически меняющимся нагрузкам, что требует особых оценок их эксплуатационной прочности и долговечности. Наиболее полные и надежные данные о работоспособности сварных сосудов могут быть получены путем испытаний натурных конструкций или их моделей и элементов.  [c.199]

Динамическую вязкость разрушения К о определяли при ударных испытаниях, обеспечивая скорость нагружения в упругой области в вершине трещины, примерно равной скорости нагружения при скачках трещины усталости. Скорость нагружения К подсчитывали по формуле [242] а = где — скорость изменения коэффициен-  [c.220]

В работах И Н Богачева с сотр установлено (рис 25), что деформационное упрочнение значительно сильнее проявляется на марганцевом стабильном аустените (Г38), чем на стабильном никелевом (Н36) Особенно существенно это различие при высоких степенях деформации Так, деформация е=М % повышает твердость никелевого аустенита в 1,5 раза, а марганцевого в 2,6 Особенностью марганцевого аустенита является его хладноломкость при низких температурах (рис 26), что аномально для сплавов с г ц к решеткой В никелевом аустените резкого падения ударной вязкости при всех температурах испытания вплоть до —196 °С не наблюдается Легирование аустенита может влиять на его свойства Так, введение хрома в марганцевый аустенит заметно уменьшает его склонность к хрупким разрушениям, а легирование никелем практически не влияет на порог хладноломкости  [c.51]

Самым распространенным способом оценки вязкости разрушения пластиков и композиционных материалов в промышленности являются ударные испытания. Существует большое число различных способов ударных испытаний [19], из которых наибольшее распространение получили методы по Шарпи, Изоду, а также метод падающего груза и ударные испытания при растяжении. Все перечисленные методы являются по существу качественными, хотя они и дают численные показатели, связанные с вязкостью разрушения. Эти показатели не могут быть использованы в количественных конструкторских расчетах подобно разрушающему напряжению при растяжении или сжатии. Фактически они позволяют только качественно сравнивать различные материалы. Несмотря, однако, на ряд ограничений, эти методы полезны, во-первых, благодаря своей простоте, а во-вторых, вследствие того, что более точная количественная оценка вязкости разрушения пластичных и вязкоупругих материалов практически отсутствует из-за слабой разработки теоретических концепций разрушения материалов, которые не являются упругими вплоть до разрушения.  [c.62]

Следует помнить, что показатели ударной вязкости, приводимые в паспортах на материалы, сильно зависят от размеров образцов, формы и размеров подрезов. Эти показатели не являются фундаментальными свойствами материалов, как описанные выше показатели вязкости разрушения (ур, G или Кс). На рис. 2.11 показано влияние радиуса закругления в конце надреза на ударную вязкость пластичного полимера. Чем острее надрез, тем меньше ударная вязкость. Для сравнения двух полимеров необходимо использовать образцы и надрезы одинакового типа. В работе [24] хорошо описаны недостатки ударных испытаний пластиков и предложена качественная характеристика ударной вязкости пластиков по температуре, при которой их разрушение переходит от преимущественно хрупкого к преимущественно пластичному разрушению при нанесении острых или тупых надрезов.  [c.63]

Рассмотрим, например, способ определения ударной вязкости по Шарпи. Он относится к методам испытаний с высокой скоростью деформирования при трех- или четырехточечном изгибе. Если испытываются образцы без надреза, то определяется преимущественно упругая энергия, накопленная в бруске перед разрушением, а ее величина определяется размерами и формой образца, разрушающим напряжением, модулем упругости образца и развитием в нем каких-либо пластических деформаций. Если в материале практически не развиваются пластические деформации, он не чувствителен к скорости деформирования. Тогда показатель вязкости разрушения по Шарпи с хорошим приближением равен площади под суммарной кривой нагрузка — деформация при низкоскоростном изгибе. Однако очевидно, что если материал чувствителен к скорости деформирования, например, в случае нехрупких полимеров, уменьшение вязкоупругих деформаций при высокой скорости деформирования приведет к снижению энергии разрушения по сравнению с медленным изгибом.  [c.64]


Точность определения нагрузки при ударных испытаниях с осциллографированием и определение динамической вязкости разрушения  [c.222]

По-видимому эти испытания имеют определенные преимущества по сравнению со стандартными испытаниями по Шарпи. В данном случае переход более резкий, а напряженное состояние в вершине трещины более жесткое, чем в V-образном надрезе стандартного образца. Существует очевидная корреляция между ударными величинами, выраженными в виде энергии на единицу площади, и вязкостями разрушения определяемыми путем испытания на растяжение надрезанных образцов (Орнер и Хартбауэр,  [c.304]

Простейшие слоистые материалы состоят из связанных гомогенных изотропных пластин. При изготовлении этих материалов слабые плоскости можно располагать благоприятным образом — так, чтобы обеспечить высокую вязкость разрушения композита. Рассмотрим идеализированный слоистый материал, изображенный на рис. 25. Поле напряжений перед трещиной задается уравнением (2). На небольшом расстоянии перед вершиной трещины развиваются поперечные растягивающие напряжения 0 . Они, в сочетании со сдвиговыми напряжениями Хху (возникающими при любых зиачениях угла 0, кроме 0=0°), могут вызвать межслоевое разрушение. Маккартни и др. [24] изучали сопротивление развитию трещины слоистого материала из высокопрочной стали (203 кГ/мм ) для случаев низкой, средней и высокой прочности связи. Связь низкой прочности (3,5—7,0 кГ/мм ) обеспечивали с помощью эпоксидных смол, а также оловянного и свинцово-оловянного припоя, связь средней прочности (38—60 кГ/мм )—с помощью серебряного припоя, а высокопрочную связь (140 кГ/мм ) — путем диффузионной сварки слоев. Во всех случаях при испытании на ударную вязкость по Шарпи образцы разрушались лишь до первой плоскости соединения слоев. Остальная часть образца сильно деформировалась и расслаивалась по той же поверхности раздела, но не разрушалась. Сходные результаты получил и Эмбе-ри с сотр. [9]. Если прочность связи уступает прочности листов, то происходит торможение трещины. Ляйхтер [23], однако, установил, что охрупчивающая фаза, возникающая при использовании некоторых твердых припоев, может существенно снизить вязкость разрушения.  [c.296]

Определение ударной вязкости белых чугунов не дает надежной информации об их работоспособности при абразивном износе в со- четании с ударами. Более рациональны испытания на многократный удар, а также оценка вязкости разрушения при плоской деформации.  [c.52]

Ударные испытания образцов е надрезом (U или V-образным), проводимые на маятниковых и ротационных коирах, позволяют устанавливать работу разрушения (ударную вязкость), приходящуюся на единицу поверхности (по минимальному сечению образца). Ударная вязкость зависит от прочности и пластичности материала при разруишнин и в значительной степени характеризует его склонность к переходу в хрупкое состояние (при снижении температуры, увеличении остроты надреза и скорости приложения нагрузки). Оснащение копров аппаратурой для регистрации усилий, перемещений, скоростей продвижения трещин позволяет определять количественные значения характеристик прочности и пластичности, кото-)ые уже могут являться расчетными. <роме того, получены определенные корреляционные связи между ударной вязкостью и энергетическими характеристиками механики разрушения Glr и J 1с-  [c.28]

В связи с этим оценка склонности реакторных сталей к хрупкому разрушению по результатам испытаний стандартных образцов на ударную вязкость принималась необходимой, но недостаточной для предотвращения опасности хрупкого разрушения. В конце 50-х-начале 60-х годов в СССР, США и Англии были проведены испыгания крупногабаритных образцов толщиной от 50 до 250 мм и шириной от 200 до 1200 мм [2, 7, 14, 16]. Эти образцы имели острые надрезы типа дефектов и трещин, сварные швы часть образцов подвергалась предварительному деформационному старению. Для испытаний таких образцов были использованы уникальные установки с предельными усилиями от 1500 до 8000 тс (15-80 МН), По результатам проведенных испьпаний была определена область критических состояний, характеризуемых резким уменьшением прочности и пластичности реакторных сталей как для стадаи возникновения, так и для стадии развития хрупких трещин. В последнем случае при температурах ниже критических разрушающие напряжения оказывались весьма низкими (0,05-0,15 от предела текучести). При наличии высоких остаточных напряжений от сварки разрушения крупногабаритных образцов с дефектами также происходили при низких номинальных напряжениях от нагрузки. Этими оп<,пными данными была обоснована необходимость расчета прочности атомных реакторов [5] по критическим температурам хрупкости и разрушающим напряжениям кр хрупких состояниях с введением запасов [ДГ] и кр соответственно, а также важность проведения термической обработки для снятия остаточных напряжений.  [c.39]

Сравнение зависимостей ударной вязкости и сопротивления разрушению от температуры испытаний стали 35ХГСА для двух температур отпуска 250 и 350° С (рис. 7) покааывают, что после отпуска при 350° С значение 4р смещается в сторону более высоких температур для стали как с мелким, так и с крупным зерном. При этом, однако, мелкозернистая сталь, по-прежнему, имеет бмее низкую критическую температуру хрупкости.  [c.16]

Влияние скорости удара на ударную вязкость. Переход от статических испытаний к ударным для вязких металлов сопровождается повышением величин действующих напряжений почти при том же или даже более высоком удлинении. Возможное повышение величины работы пластической деформации сравнительно невелико увеличение скорости в 105 раз (переход от статического испытания к ударному) даёт увеличение работы пластической деформации в 1,6 раза. В случаях, когда увеличение скорости удара не вызывает хрупкого разрушения металла, величина практически не зависит от скорости при изменении последней в пределах, получающихся на обычных копрах. При переходе от обычных скоростей 3—7 м сек к скоростям 20—100 м1сек  [c.40]

Удельная ударная вязкость (ОСТ НКТП 3079) определяется работой, необходимой для разрушения образца при испытании его на изгиб динамической нагрузкой на маятниковом копре типа Шарпи. Схема испытания приведена на фиг. 40. Фибра испытывается на удельную ударную вязкость согласно стандарту Главного управления НКАП 133 СО. Методы испытаний удельной ударной вязкости текстолита и гетинакса при низких и высоких температурах регламентированы нормалями Главного управления НКАП 144 СО и 142 СО.  [c.311]

Прочность при динамических нафуз-ках определяют по данным испытаний на ударную вязкость (разрушение ударом стандартного образца на копре), на усталостную прочность (определение способности материала выдерживать, не разрушаясь, большое число повторно-переменных нафузок), на ползучесть (определение способности нафетого материала медленно и непрерывно деформироваться при постоянных нафузках). Наиболее часто применяют испытания на ударную вязкость (рис. 1.7)  [c.12]

Визуально оценивается также качество металла по виду излома специального образца, например разрушенного образца при испытании на ударный изгиб, или подобного ему образца, раскрывающего особенности строения и металлургического качества металла в сечении изделия. Такое исследование назьшается фрактшрафическим. При фрактографическом исследовании по виду излома судят о вязкости или хрупкости металла. Матово-волокнистый излом свидетельствует о вязкости, а блестяще-кристаллический — о хрупкости.  [c.71]


Наименее прочным участком сварных соединений высокохромистых сталей является, как правило, участок высокого отпуска и межкритического интервала, по которому обычно и проходят разрушения при испытаниях на растяжение образцов с поперечным швом. Участки околошовной зоны и шва в исходном состоянии после сварки имеют высокую твердость при низких значениях пластичности и особенно вязкости. Так, ударная вязкость околошовной зоны стали марки 1X13 с содержанием углерода 0,1% составляет лишь 2 Ka -Ml M -, с повышением содержания углерода в стали до 0,2% она снижается до 0,5 кгс-м см . При очень низком содержании углерода, как например, в стали 0X13, ударная вязкость околошовной зоны также весьма низка, но уже не из-за образования закаленных структур, а из-за роста в ней ферритных зерен.  [c.205]

В существующих определениях ударной вязкости и вязкости разрушения материала существует некоторая нечеткость. В общем случае при ударных нагрузках материалы разрушаются хрупко, т. е. с небольшими пластическими (неуиругими) деформациями до разрушения или при их полном отсутствии. Наиболее просто при высокоскоростных испытаниях, таких как ударные испытания по Шарпи или по Изоду, измеряется энергия маятника, затрачиваемая на разрушение, или общая площадь под кривой нагрузка — время, если испытательный прибор снабжен приспособлением для записи усилий в маятнике. Хорошо известно, что маятниковые методы дают результаты, очень чувствительные к форме и размерам образца и обычно трудно коррелируемые с поведением материала в реальных условиях. В принципе, эти методы являются первой попыткой измерения стойкости материала к росту трещины, а нанесение острого надреза в образце — попыткой исключения энергии инициирования трещин из общей энергии разрушения. Надрез в образце также обусловливает разрушение по наибольшему дефекту известных размеров и исключает влияние статистически распределенных дефектов в хрупком теле. Развитие механики разрушения поставило методы оценки вязкости разрушения хрупких тел на научную основу, однако ударные маятниковые методы все еще широко используются и при соблюдении определенных условий могут давать для композиционных и гомогенных материалов результаты, сравнимые с по-  [c.124]

Энергия разрушения при росте трещины перпендикулярно направлению ориентации волокон обычно не чувствительна к выбору полимерной матрицы. Введение эластификаторов хотя и повышает величину Ур, однако это повышение незначительно при малом его количестве [28]. По вязкости разрушения очень хрупкие стекла, армированные углеродными волокнами, мало отличаются от материалов на основе пластичных полимеров [18]. Однако, как было показано Баркером [190], ударная вязкость по Шар-пи ряда композиционных материалов на основе различных углеродных волокон и различных полимерных матриц резко зависит от температуры испытаний. На кривых температурной зависимости ур композиционных материалов в области 7 с матрицы наблюдается максимум, значительно более резко выраженный, чем для ненаполненных матриц. Очевидно, что резкое возрастание ур композиционных материалов не может быть обусловлено только возрастанием энергии разрушения полимерной матрицы при ее Тс, а связано с изменением адгезионной прочности сцепления фаз.  [c.130]

Определение работы, поглощенной при ударном испытании, планиметрированием осциллограмм нагрузка—прогиб и непосредственное ее измерение по отклонению маятника дают близкие результаты (рис. 13.24) [19]. Однако это не доказывает, что нагрузка при осциллографиро-вании измерена достаточно точно. При хрупком разрушении, т. е. при малых значениях прогиба, даже при существенном различии в максимальной нагрузке могут быть получены близкие значения работы, поглощенной при испытании образцов. В то же время основным назначением измерения нагрузки при ударных испытаниях является определение параметра вязкости разрушения при динамическом нагружении Кр. Для определения этой характеристики необходимо существенно ограничить пластическую деформацию у вершины трещины, т. е. в  [c.222]

Г1рактика технического металловедения показала, что величина ударной вязкости при комнатной температуре испытаний не может служить мерой сопротивления разрушению материалов в различных ужесточенных условиях испытаний (например, при понижении температуры) и во многих случаях не может выявить различных структурных и металлургических факторов, ответственных за ухудшение эксплуатационных характеристик. Это обусловлено тем, что при вязком разрушении, которое обычно реализуется при комнатной температуре испытаний, чувствительность к структурным факторам, которые определяют охрупчивание, резко снижается. В то же время изменение условий нагружения, способствующее  [c.235]


Смотреть страницы где упоминается термин Вязкость разрушения ударная — Испытания : [c.10]    [c.98]    [c.268]    [c.102]    [c.233]    [c.129]    [c.94]    [c.204]    [c.63]    [c.23]    [c.41]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.235 ]



ПОИСК



Вязкость Испытания

Вязкость разрушения

Вязкость разрушения ударная

Вязкость ударная

Вязкость ударная — Испытани

Испытание без разрушения

Испытание ударную вязкость

Испытания ва вязкость ударну

Испытания на вязкость разрушени

Испытания на вязкость разрушения

Образцы для испытаний ударной вязкости вязкости разрушения

Точность определения нагрузки при ударных испытаниях с осциллографированием и определение динамической вязкости разрушения

Ударная вязкость см- Вязкость

Ударная вязкость см- Вязкость ударная

Ударное разрушение



© 2025 Mash-xxl.info Реклама на сайте