Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал металла в щелях

Особая осторожность должна быть проявлена при защите анодными ингибиторами конструкций, содержащих зазоры и щели. Такие конструкции и в отсутствие ингибиторов. подвергаются часто сильной коррозии из-за возникновения макроэлементов [55]. При неправильной дозировке анодных ингибиторов щелевая коррозия может возрасти. Объясняется это тем, что концентрация ингибитора в щелях, куда их доступ затруднен, может снизиться до значени , пр которых полная пассивация пО)Верхности станет невозможной. Поскольку на открытой поверхности, куда имеется свободный доступ ингибитора, металл остается в пассивном состоянии и его потенциал более положителен, чем в щели, где часть поверхности находится в активном состоянии, возникает своеобразный активно-пассивный элемент, анодом которого является металл, находящийся в щели. Благодаря анодной поляризации потенциал металла в щели сдвигается в положительную сторону (по сравнению с потенциалом, который металл имел в отсутствие ингибиторов) и в соответствии с законами электрохимической кинетики скорость растворения увеличивается. В результате этого при неправильном дозировании ингибиторов наблюдаются сильные разрушения металлов под уплотнительными прокладками, в резьбовых соединениях, в кольцевых зазорах трубной доски конденсаторов, в застойных местах охладительных систем и т. п.  [c.99]


Коррозионное поведение металлов в щелях в присутствии ингибиторов становится понятным, если проследить за изменением потенциала металла в щели (рис. 3,8). В начальный период потенциалы железа в узкой щели (0,05 мм) и на свободно омываемой электролитом поверхности одинаковы. Однако уже через 1—2 сут потенциал железа в узкой щели (0,05 мм) начинает постепенно сдвигаться в сторону отрицательных значений, достигая по истечении 20—30 сут —0,30 В. Потенциал железа, к которому имеется свободный доступ электролита, устанавливается на уровне +0)25 В. Разность потенциалов между двумя такими участками  [c.101]

Изучение стационарных потенциалов ряда металлов в щелях [24, 25] показало, что это на самом деле происходит (рис. 88). Потенциал в щели может при этом сместиться в отрицательную сторону на относительно большую величину. Особенно сильно меняются потенциалы нержавеющих сталей так например, для сталей Х13 и Х17 потенциал металла в щели сдвигается в область отрицательных значений на 0,55—0,60 в по сравнению с потенциалом металла на открытой поверхности. Объясняется это тем, что вследствие недостаточного доступа кислорода нержавеющая сталь переходит из пассивного состояния в активное. Потенциал железа, который мало зависит от концентрации кислорода как на открытой поверхности, так и в щели, имеет значение, характерное для активного состояния.  [c.216]

До сих пор мы ограничивались рассмотрением электрохимического и коррозионного поведения металлов лишь в щелях. На самом же деле металл, находящийся в щели, всегда находится в контакте с металлом, свободно омываемым электролитом. Последнее существенно изменяет характер процесса [38]. Поскольку потенциал металлов в щелях, как было показано на рис. 88, заметно отличается от потенциала металла, к которому имеется свободный доступ кислорода или другого пассива-тора, создаются благоприятные условия для возникновения макроэлементов, в которых анодами является металл, находящийся в зазоре. Приведенные на рис. 91 кривые, характеризующие изменение тока во-времени, возникающего между электродом, свободно омываемым электролитом, и электродом, находящимся в щели, показывают, что на различных металлах в таких условиях функционируют довольно мощные элементы.  [c.220]

Щелевая коррозия латуней сопровождается еще одной неприятной особенностью, заключающейся в том, что в щелях наблюдается заметное усиление процесса обесцинкования. Анализ электролитов на содержание меди и цинка показал, что в щели концентрация цинка гораздо выше, чем в электролите, который имел свободный доступ к металлу. Объясняется это следующими причинами сдвиг стационарного потенциала металла в щели или зазоре в отрицательную сторону сопровождается, как было показано, значительным облегчением процесса ионизации металла. С разблагораживанием потенциала скорость ионизации цинка увеличивается сильнее скорости ионизации меди, что ведет к преимущественному переходу цинка в электролит.  [c.242]


Изменение электродного потенциала металла в щели в отрицательную сторону приводит к образованию макроэлемента типа щель — открытая поверхность и усилению эффективности его  [c.59]

Катодная защита. Наилучший эффект достигается при поляризации до значения коррозионного потенциала активного металла в щели. Достижение этого значения потенциала уменьшает коррозию, но не сводит ее к нулю. В морской воде для изготовления жертвенных анодов успешно применяют железо, а также еще менее благородные металлы [45].  [c.316]

Для простоты приводится одна анодная поляризационная кривая для щели и открытого участка поверхности сплава. Как видно из рис. 17, сплав в щели находится в активном состоянии, а на открытой поверхности — в пассивном состоянии (коррозионный потенциал им ет более положительное значение). В этих условиях между участком сплава в щели и открытой поверхностью возникают локальные токи, что приводит к сближению их потенциалов ( к, и к,). Однако в этих условиях система часто остается не полностью заполяризованной. В процессе коррозии металла в щели изменяется состав раствора (pH, концентрация ионов металла и других компонентов раствора) из-за возникающих диффузионных ограничений, что приводит к изменению хода анодной парциальной кривой для этой части поверхности. При этом может изменяться положение равновесного потенциала, Еа и значения других величин, и парциальные анодные кривые для сплава в щели и на открытой поверхности становятся разными.  [c.42]

Сравнивая расчетные данные о распределении потенциала вдоль щели с экспериментально полученными в работе [8], авторы установили их полную согласованность. Различия расчетных и экспериментальных кривых они объясняют упрощающими допущениями (не учитываются изменения проводимости электролита при прогрессировании коррозии в щели, а также анодное поведение металла в щели).  [c.34]

Развитие щелевой коррозии связывают с затруднением доступа кислорода из объема электролита в зазор, изменением pH раствора электролита в зазоре и возникновением коррозионного элемента типа щель — открытая поверхность. Затруднение доступа кислорода вызывает торможение катодного процесса, в результате чего электродный потенциал металла в зазоре понижается и облегчается протекание анодного процесса.  [c.107]

Затруднение доступа кислорода и электролита в зазор вызывает облегчение анодного и замедление катодного процессов, в результате чего электродный потенциал металла в зазоре смещается в отрицательную сторону по сравнению с потенциалом металла на открытой поверхности. Это приводит к возникновению макроэлементов типа щель — открытая поверхность, в которых анодом работает металл в зазоре.  [c.109]

При потенциале ниже критического ионы С1 не могут заместить адсорбированный кислород до тех пор, пока пассивная пленка остается неповрежденной, поэтому питтинг не развивается. Если бы пассивность была нарушена другим путем, например снижением концентрации кислорода или деполяризатора в щелях (щелевая коррозия) или локальной катодной поляризацией,- пит-тинг мог бы тогда возникнуть независимо от того, выше или ниже критического значения находится потенциал основной поверхности. Но в условиях однородной пассивности на всей поверхности металла, чтобы организовать катодную защиту для предотвращения питтингообразования, требуется лишь сдвинуть потенциал металла ниже критического значения. Это противоречит обычному правилу применения катодной защиты, согласно которому необходима более глубокая поляризация металла — до значения анодного потенциала при разомкнутой цепи.  [c.88]

Результаты этих и других экспериментов позволяют объяснить некоторые особенности коррозии титана в щелевых условиях. Как и у других металлов, коррозия начинается с возникновением ячейки дифференциальной аэрации. При обычных температурах эта ячейка не действует, так как для поддержания пассивности титана в щели требуется настолько мало кислорода, что он не расходуется полностью. При высоких температурах концентрация кислорода в щели может быть уже недостаточна для залечивания пробоев пассивной пленки, в результате чего образуются локальные активные центры, понижающие потенциал в щели. Для поддержания электрохимической нейтральности хлор-ионы мигрируют в щель, а ионы натрия — наружу. Это повышает кислотность раствора в щели и усиливает локальную коррозию металла [82]. Однажды начавшись, коррозия будет продолжаться п в дальнейшем в форме дифференциального концентрационного элемента, независимо от наличия или отсутствия кислорода.  [c.128]


К катодным покрытиям относятся те покрытия, электрохимический потенциал которых в данных условиях больше, чем у защищаемого металла. На алюминий почти всегда наносят катодные покрытия. Покрытия из благородных металлов на стали имеют такой же характер. Катодные покрытия защищают металл только благодаря его изоляции от атакующей среды. Поэтому свою роль они выполняют только при наличии полной сплошности. Если в катодном покрытии образуется щель, то в условиях коррозии она становится катодом, а открытая часть защищаемого металла — анодным элементом. Анодная поверхность при этом значительно меньше, чем катодная. Электрохимическое разрушение металла концентрируется на небольшой поверхности. Учитывая опасности, кроющиеся в возможных несплошностях катодных покрытий, их делают сравнительно большой толпщны.  [c.496]

Смещение стационарного потенциала в щели в отрицательную сторону в первом случае — приведет к активированию металла и усиленному его разрушению в щели 12 <12), а во втором случае Кз — ) пассивное состояние не будет нарушено (I s i ). Отсюда следует, что особо чувствительными к щелевой коррозии должны быть металлы, находящиеся в пассивном состоянии. Однако не всегда уменьшение эффективности катодного процесса и ускорение анодного в щелях должно вызывать активирование сплава. Если эти изменения в кинетике электрохимических реакций не выводят стационарный потенциал за значение потенциала полной пассивации, активирования не произойдет. Хотя нержавеющие и обычные стали (последние  [c.217]

Оказалось, что эти явления обусловлены особенностями электрохимического поведения металла у мениска, образующего узкую щель у поверхности металла в результате недостаточного доступа ингибитора в эту часть электролита концентрация его довольно быстро падает и потенциал металла становится более отрицательным. Удалось показать, что в этих условиях возникает довольно мощный гальванический элемент, в котором анодные процессы концентрируются в зоне мениска, что и приводит к разрушению металла вдоль ватерлинии. А раз эти процессы не вызываются какими-либо особенными свойствами ватерлинии, а связаны с изменением концентрации ингибитора, то можно исключить опасную коррозию у ватерлинии применением для конструкций, имеющих ватерлинию, более высоких концентраций ингибиторов по сравнению с обычными, чтобы не допустить снижения концентрации в мениске до опасных значений.  [c.228]

Исследование количественной зависимости коррозии от величины зазора показало, что для нержавеющих сталей имеется сложная зависимость скорости процесса от ширины зазора (рис. 102). При определенной величине зазора наблюдается максимальная скорость и интенсивность коррозии. Такая сложная зависимость обусловлена различной концентрацией кислорода в щели и изменением характера коррозии. По мере уменьшения величины зазора затрудняется доступ кислорода, что понижает окислительно-восстановительный потенциал системы. Появляется возможность нарушения пассивного состояния в наиболее слабых местах пленки. Коррозия приобретает местный характер. В весьма тонких зазорах концентрация кислорода настолько мала, что пассивное состояние нарушается уже на значительной части поверхности, где и появляется коррозия. Поскольку коррозионный процесс развивается на значительной части поверхности, то при недостаточной концентрации кислорода интенсивность коррозии, т. е. скорость проникновения в глубь металла, падает. По мере увеличения ширины зазора свыше 0,1 мм доступ кислорода постепенно усиливается, пассивное состояние становится более устойчивым — скорость и интенсивность коррозии падают.  [c.234]

Ускорение анодного процесса в щелях и зазорах, обусловленное недостатком кислорода, приводит к сдвигу электродного потенциала металла в щели в отрицательную сторону. Кроме того, при недостатке кислорода ионизация железа идет преимущественно с образованием двухвалентных его ионов, не обладающих защитным действием. У пассивирующихся металлов (алюминия, титана, нержавеющих сталей) недостаток кислорода в щели приводит к полной депассиващш там металла, т. е. к существенному ускорению коррозии.  [c.59]

Электродный потенциал металла в щели вследствие описанных выше явлений сдвигается в отрицательную сторону, особенно сильно это явление выражено для нержавеющих сталей. При коррозии металлов в щелях (зазорах) изменяется характер коррозионной среды в зазоре. Одна из при этого состоит в реализации в данных системах макроэлемента типа щель открытая поверхность. В щелйх и зазорах возможен процесс гидролиза продуктов коррозии, что приводит к подкислению там среды. Есть основание полагать, что в подобных системах  [c.59]

Изменение силы тока в таком элементе во времени показано на рис. 103. Заметим, что хотя возникновение и функционирование таких элементов и связано с изменением концентрации кислорода, их нельзя отождествлять с парами дифференциальной аэрации. В самом деле, вначале не возникает никакого тока между металлом, находящимся в зазоре, и металлом, к которому имеется свободный доступ коррозионной среды. Ток возникает лишь после нарушения пассивного состояния металла в щели и появления в системе электродов со значительной разностью потенциалов, которую сама по себе дифференциальная аэрация создать не может. Незначительная разница в концентрации кислорода, которая имеет место вначале, создает и незначительную разность потенциалов. Элемент работает весьма слабо. Со временем благодаря расходу кислорода в щели потенциал нержавеющей стали разблагораживается, разность потенциалов все более и более увеличивается. Анодная поляризация в свою очередь способствует подкислению среды, что приводит к дополнительному раз-  [c.235]


Долгое время вопрос о возможности электрохимической защиты металла в щелях оставался дискуссионным. Были опасения, что в щель будет ответвляться такая незначительная доля тока, которая не обеспечит необходимого сдвига потенциала. Эта задача решалась нами совместно с Маршаковым применительно к защите тюбингов метрополитена в почвах, сильно увлажненных морской водой. Было установлено, что полная электрохимическая защита чугуна в 0,5-н. Na l достигается при потенциале —0,8 в (по отношению к водородному электроду). Для  [c.269]

Механизм щелевой коррозии для пассивных металлов и сплавов можно представить следующим образом. Во времени, вследствие затруднения доступа окислителя и расходования его в коррозионном процессе, снижается его концентрация в щели, и эффективность катодного процесса уменьшается. Если при уменьшении концентрации окислителя катодный ток обеспечивает поддержание пассивного состояния и потенциал коррозии сплава остается в пассивной области, то коррозионный ток практически не меняется. При дальнейшем уменьшении концентрации величина катодного тока становится настолько малой, что потенциал металла смещается в отрицательную сторону, металл в щели переходит в активное состояние и скорость его растворения увеличивается. Появление в растворе продуктов коррозии и их гидролиз приводят к подкислению раствора. Протекание коррозионного процесса при ограниченной скорости подвода свежего электролита вызывает дальнейшее понижение pH, что облегчает анодный процесс растворения металла и создает возможность протекания катодного процеса с водородной деполяризацией. Это увеличивает коррозионный ток. Процесс под-кисления коррозии в щели особенно ускоряется, если металл в щели при смещении потенциала в отрицательную сторону становится анодом по отношению к металлу открытой поверхности, что обычно наблюдается в практических случаях щелевой коррозии.  [c.84]

Если металл в щели находится в активном состоянии и коррозия протекает в области кислородной деполяризации, то уменьшение концентрации окислителя приведет к понижению скорости коррозии. При определении кислорода в щели было установлено, что падение его концентрации зависит от конфигурации, времени и природы соприкасающихся металлов [54]. Средняя концентрация кислорода снилсается в начале опыта быстро, а затем медленнее и тем сильнее, чем уже щель (рис. 22). Сдвиг потенциала сплава при понижении концентрации кислорода в щели в отрицательную сторону приводит к увеличению скорости растворения только в случае активации пассивного состояния. Например, как показало снятие кривых для титана (рис. 23), в растворах Na l при pH=0,95, даже при отрицательных потенциалах, титан находится в пассивном состоянии. Петля активного растворения, свидетельствующая о возможности активации металла, обнаруживается только при значении pH=0,5 и ниже [56]. Аналогичные данные были получены для нержавеющих сталей в морской воде [54]. Было показано, что при уменьшении концентрации кислорода в зазоре (до 0,07 мг/л) происходит сильное смещение потенциала стали 12X13 в отрицательную сторону (до —0,45 В), а скорость коррозии стали изменяется мало 0,044 и 0,088 мг/(см2-сут) соответственно. При уменьшении pH раствора до 2,3 и ниже (подкисление добавкой H I) наблюдается сильное увеличение скорости коррозии— до 35 мг/(см2-сут) при pH =1,6.  [c.84]

Медь и оловянистая бронза [50, с. 240] корродирует в зазорах со значительно меньшей скоростью, чем в объеме раствора. Это объясняется тем, что при увеличении концентрации собственных ионов в щели потенциал меди сдвигается в положительную сторону, и металл в щели становится катодом. Латуни корродируют в щели с больщей скоростью, чем в объеме раствора и подвергаются обесцинкованию.  [c.88]

Следует сразу же оговориться, что истолкование механизма разрушения сплавов в нейтральных электролитах за счет БОДородной хрупкости встречается со значительными трудностями. Без специальных допущений нельзя понять, почему стали способны из нейтральных электролитов вытеснять водород в стационарных условиях. Потенциал большинства высокопрочных сплавов, а легированных (нержавеющих) тем более, намного положительнее потенциала водородного электрода. Поэтому коррозионный процесс не может протекать с водородной деполяризацией. Правда известно, что для обычных нелегированных сталей доля водородной деполяризации составляет около 2%. Однако этого количества водорода едва ли достаточно, чтобы вызвать водородную хрупкость, а для более благородных сплавов, как уже указывалось, водородной деполяризации вообще не следует ожидать. Чтобы обойти эти трудности, делается ряд допущений. В частности, одно из них заключается в том, что, поскольку анодный процесс протекает в вершине трещины на весьма ограниченной площади и к тому же сильно ускоряется при деформации, то это может привести к заметному подкислению среды в щели. Другое возможное объяснение исходит [58, 59] из того, что коррозионная трещина берет обычно свое начало от питтинга, в котором, как известно, коррозионная среда более кислая, чем остальной электролит. Наконец следует упомянуть и о другой, по-видимому, более вероятной возможности протекания процесса за счет водородной деполяризации. Следует иметь в виду, что в процессе развития трещины все время открываются новые свежие участки металла, не покрытые окисными пленками. Такая ювенильная поверхность обладает более отрицательным потенциалом и она может свободно вытеснять водород и из нейтральных электролитов. Этот механизм, как нетрудно заметить, может объяснить быстрый рост трещины и разрушение сплава. Однако водородная хрупкость здесь является вторичным процессом, а не первичным. Для того, чтобы трещина начала развиваться, нужны какие-то другие причины. Точно так же для подкисления металла в щели или в ииттинге необходимо, чтобы начал развиваться активный анодный процесс. Таким образом водородная хрупкость является лишь следствием возникновения в щели активного анодного процесса, а не первопричиной разрушения сплавов. Что же инициирует вначале анодный процесс, пока не ясно.  [c.125]

С другой стороны, аиодная поляризация должна влиять в прямо противоположном направлении КР, обусловленное активным растворением металла в щели, должно ускоряться, а водородная хрупкость ослабляться, поскольку скорость разряда водорода по мере снижения потенциала в положительную сторону должна падать, а при достижении определенного значения адсорбированный металлом водород начнет растворяться.  [c.126]

Отмеченные обстоятельства, облегчающие протекание анодного процесса на дне трещин и концентраторов напряжений, способствуют разблагораживанию значений потенциала металла в,этих районах, что создает и непрерывно увеличивает э.д.с. коррозионных пар концентраторы напряжений —соседние участки на стенках трещин и на внешней поверхности металла. Такое предположение корреспондируется с данными Эделяну [90], который наблюдал, что незадолго до растрескивания образцов из А1 — Mg сплава в растворе K I со стенок развивающихся трещин и с соседних участков локально ускоряется выделение пузырьков водорода, т. е. усиливается процесс катодной деполяризации, и нашло прямое экспериментальное подтверждение при измерении потенциала на дне концентратора напряжений и на поверхности металла [40, 42], а также при исследовании электрОг химических характеристик железа в щелях и в объеме электролита [28].  [c.26]


Как отмечают И. Б. Улановский и Ю. М. Коровин, при щелевой коррозии нержавеющих сталей в морской шоде иногда сначала может происходить сдвиг потенциала в положительную сторону, при котором достигается потенциал питтингообразования и возникают пит-тинги. Начальное смещение потенциала в щели в лоло-жительную сторону может быть вызвано анодной поляризацией за счет контакта металла в щели с металлом открытой поверхности, имеющим более положительный потенциал. Гидролиз продуктов коррозии, образующихся в питтингах, снижает pH раствора в щели и сталь активируется. У сталей, имеющих более высокую стойкость к питинговой коррозии, более вероятным будет смещение потенциала в отрицательную сторону за счет снижения концентрации кислорода в щели, а затем активация стали.  [c.68]

Коррозионные трещины часто представляют собой узкие щели, заполненные продуктами коррозии, что, несомненно, затрудняет доступ кислорода к дну трещин по сравнению с поверхностью металла. В этих условиях, если процесс протекает с кислородной деполяризацией, усиливают свою работу концентрационные коррозионные элементы. Потенциал на дне концентраторов наиряжений по мере их роста смещается к более отрицате.льиым значениям, и вследствие высоких местных напряжений там может выделиться новая структурная составляющая, которая будет  [c.108]

Алюминий склонен к образованию питтинга в водах, содержащих ионы С1 . Это особенно сильно проявляется в щелях или застойных зонах, где пассивность нарушается в результате образования элементов дифференциальной аэрации. Механизм питтин-гообразования аналогичен механизму для нержавеющих сталей, описанному в разд. 18.4.1 и в этом случае наблюдается критический потенциал, ниже которого питтинг не возникает [4, 5]. При наличии в воде следов ионов Си + (даже в количестве 0,1 мг/л) или Fe + они реагируют с алюминием, и на отдельных участках отлагаются металлическая медь или железо. Эти металлы выполняют роль катодов, сдвигая коррозионный потенциал в положительном направлении до значения критического потенциала пит-тингообразования. Таким образом, они стимулируют как возникновение питтинга, так и его рост под действием гальванических  [c.342]

Значительные проблемы в этой области связаны с коррозией под напряжением, при трении, с коррозионной усталостью и растрескиванием. Однако коррозия наружных и особенно скрытых поверхностей фюзеляжа самолета весьма актуальна. В замкнутых объемах и профилях фюзеляжа, как и в полостях кузовов автомобилей, влага задерживается длительное время. Это объясняется следующими причинами высокой относительной влажностью (до 90% и выше) в непроветриваемых, труднодоступных частях центроплана высокой температурой в этих объемах (летом на 10—15°С выше температуры окружающего воздуха) попаданием конденсата и агрессивных жидкостей конденсацией воды в топливных баках и т. д. Наиболее распространенными являются контактная, щелевая и нитевидная коррозии, расслаивающая коррозия, ииттинг- и фреттинг-коррозии. Продукты коррозии легких сплавов имеют больший объем, чем сам металл и могут наносить значительный ущерб прочности конструкций. Коррозия алюминиевых сплавов в щелях в 10—12 раз выше коррозии на поверхности потенциал в щели на 200—300 мВ сдвинут в отрицательную область [128].  [c.202]

Анодные кривые титана в щели и объеме раствора свидетельствуют о значительно более высокой склонности титана к щелевой коррозии по сравнению с коррозией в объеме раствора. Общий вид анодной кривой титана в объеме раствора типичен для анодного поведения легкопассивирующихся металлов в растворах хлоридов и характеризуется потенциалом питтингообразования, равным 1,15 В. Однако по кривым изменения тока во времени видно, что уже при потенциале -(-0,7 В появляются всплески тока, свидетельствующие о зарождении дефектов в пленке, которые в условиях анодной поляризации могут залечиваться вплоть до потенциала пробоя.  [c.51]

Кривая Т1 в условиях щели показывает, что потенциал начала развития щелевой коррозии отрицательнее потенциала пит-дингообразования на 1,2 В. и лежит в области стационарных по-денциалов, т. е. область пассивного состояния металла исчезает совсем. Таким образом, можно сказать, что результаты исследования электрохимического поведения Т1 при температуре 160°С указывают на вероятность коррозии и в щели, и в объеме раствора, однако инкубационный период начала коррозионного процесса в щели значительно меньше, чем в объеме.  [c.51]

Контакт металла, находящегося в зазоре, с металлом, к которому имеется свободный доступ электролита, не приводит, как это наблюдалось, например на алюминии и нержавеющей стали, к заметному увеличению скорости процесса. Причины такого аномального поведения магния еще не совсем понятны. Очевидно, они обусловлены в некоторой степени подщелачиванием среды. В результате деятельности микроэлементов электролит в щели довольно быстро насыщается гидратом окиси магния. Уже через 1.5 ч значение pH раствора в щели достигает 10. Подщелачивание для магния ведет, как известно, к облагораживанию потенциала. Поэтому металл, находящийся в зазоре, становится катодом. Разность потенциалов между металлом, находящимся в зазоре, и металлом, корродирующим в условиях свободного доступа кислорода, однако, незначательна она не превышает нескольких милливольт. Поэтому практически такой элемент мало эффективен.  [c.244]

Применительно к конструкции, содержащей щели, в которых металл является анодом, это означает, что защита будет достигнута в том случае, когда потенциал всей конструкции достигнет такого значения, которое устанавливается в щели в отсутствии поляризации. Учитывая, что анодное растворение в щели протекает в условиях, когда металл находится по существу в активном состоянии, а катодная поверхность составляет основную часть системы (поляризуемость катода невелика), электрохимическая защита может потребовать больших токов. Поэтому при осуществлении электрохимической защиты металла, находящегося в щели, приходится, кроме обычной задачи определения защитного потенциала, для данных условий решать и такие вопросы, как распределение тока между открытой поверхностью и щелью, распределение потенциала по глубине зазора и т. д. В определенных условиях (плохо проводящие среды, узкие зазоры) может оказаться, что ответвляе-люго тока будет недостаточно для сдвига потенциала в желаемом направлении.  [c.269]

Стационарные потенциалы алюминия АД-1 и стали Х18Н10Т в одних и тех же растворах перекиси водорода различаются почти на вольт (см. рис. 13—15), что даже при одинаковых размерах поверхности обоих металлов должно сместить потенциал стали в катодную сторону к значениям, при которых возможно восстановление перекиси водорода и окислов железа, а также гомогенное каталитическое разложение перекиси водорода за счет ионов железа, переходящих в раствор. В застойных местах (щелях, зазорах) может произойти значительное уменьшение содержания перекиси водорода (из-за разложения пос.тедней) и нарушение пассивности нержавеющей стали, в результате чего и появляется контактно-щелевая коррозия стали.  [c.103]


Смотреть страницы где упоминается термин Потенциал металла в щелях : [c.241]    [c.270]    [c.105]    [c.221]    [c.61]    [c.62]    [c.62]    [c.87]    [c.671]    [c.102]    [c.217]    [c.228]    [c.230]    [c.137]    [c.7]   
Ингибиторы коррозии (1977) -- [ c.101 , c.102 ]



ПОИСК



183, 185, 189 в щелях

Потенциалы металлов

Щелчки



© 2025 Mash-xxl.info Реклама на сайте