Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимическая коррозия щелочная

Коррозионностойкими (нержавеющими) называют стали, обладающие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой,  [c.262]

Образование трещин в паровых котлах необходимо рассматривать прежде всего как частный случай электрохимической коррозии, протекающей по границам зерен напряженного металла в щелочном концентрате котловой воды.  [c.7]


В зависимости от химического состава и структуры металла, природы агрессивной среды, условий ее воздействия электрохимическую коррозию подразделяют на солевую, щелочную, кислотную, атмосферную, почвенную, контактную, биологическую, коррозию под напряжением и пр.  [c.6]

I. Коррозионностойкие (нержавеющие), обладающие стойкостью против электрохимической коррозии атмосферной, почвенной, щелочной, кислотной, солевой, в морской воде и др. Примерное назначение коррозионно-стойкой стали приведено ниже.  [c.28]

Щелочная хрупкость есть частный случай электрохимической коррозии, протекающей по границам зерен напряженного металла в щелочном концентрате котловой воды. Наряду с электрохимическим процессом, управляющим межкристаллитной коррозией, существенную роль в ее развитии играет водород, выделяющийся на катодных участках.  [c.272]

Сущность процесса межкристаллитной коррозии (щелочной хрупкости) в деталях еще не установлена, хотя электрохимический ее характер признается большинством специалистов. Ионы железа, образующиеся у анодных участков, вступают во взаимодействие с возникающими у катодов гидроксильными ионами  [c.182]

Большинство нейтральных и кислых ионно-дисперсных веществ стимулирует протекание процессов электрохимической коррозии. Коллоидно-дисперсные соединения и вещества, легко образующие нерастворимые соединения (например, соли карбонатной жесткости), обычно их замедляют. Щелочные соединения — гидраты, карбонаты, фосфаты, силикаты — несколько снижают интенсивность общей коррозии, однако в ряде случаев могут способствовать локализации кислородной коррозии за счет уменьшения площади анодных участков при неизменной силе коррозионного тока.  [c.189]

Трудности в определении степени щелочной агрессивности котловой воды и в установлении истинных причин разрушения элемента котельного агрегата привели в настоящее время к такому положению, что почти все случаи трещинообразования в барабанах котлов Госгортехнадзором и рядом специализированных организаций (ОРГРЭС, ВТИ и др.) квалифицируются как результат межкристаллитной щелочной электрохимической коррозии. Показателями, подтверждающими наличие данного вида коррозии, считаются межкристаллитный характер начальной фазы трещинообразования по результатам металлографического исследования и сохранение нормальных механических свойств основного металла в местах, приближенных к очагу возникновения трещин.  [c.239]


Образующиеся под воздействием щелочи коррозионные повреждения имеют в основном местный характер (повреждения имеют вид неправильной формы) и располагаются на внутренней поверхности стенки со стороны топочной камеры. Щелочная коррозия относится уже к типу электрохимической она часто сопровождает химическую коррозию и усиливает ее. К электрохимической коррозии относятся процессы разрушения металла при воздействии на него коррозионно-активных газов в присутствии влаги.  [c.89]

К электрохимической коррозии относится щелочная коррозия, которая получила свое наименование вследствие образования концентрированных растворов едкого натрия в местах перегрева метал-та и глубокого упаривания котловой воды. Этот вид коррозии возникает, когда едкий натрий составляет значительную долю в солевом составе котловой воды. В этом случае под слоем отложений концентрация едкого натрия может достигать больше 50%. Концентрированные растворы едкого натрия при высоких температурах вызывают растворение защитной пленки металла. Незащищенный металл иод слоем отложений продолжает корродировать до тех пор, пока утонение стенки не приводит к образованию сквозного отверстия — свища.  [c.102]

В зависимости от условий, в которых идет процесс коррозии, электрохимическую коррозию называют атмосферной, морской, почвенной, кислотной, щелочной. По характеру разрушения различают равномерную и местную коррозию. Кроме этого, для различных видов местного коррозионного разрушения используют следующие понятия.  [c.473]

Из сказанного видно, что электрохимическая коррозия стали зависит от природы электролита и по-разному происходит в кислых, щелочных и нейтральных растворах. Измерение pH раствора по-разному влияет на коррозионные процессы различных металлов, в связи с чем для различных металлов имеются вполне определенные значения pH для оптимальных коррозионных процессов. Кривые зависимости скорости коррозии к стали от pH раствора и концентрации растворенного кислорода приведены на фиг. 6.  [c.18]

Электрохимическую коррозию в зависимости от условий протекания и свойств среды подразделяют на кислотную, щелочную, солевую (соответственно в растворах кислот, щелочей, солей, в расплавленных солях, на воздухе или в газе) почвенную под воздействием блуждающих токов (например, у подземных сооружений) контактную (при контакте разнородных металлов) биокоррозию (под воздействием продуктов, выделенных микроорганизмами) и т. п.  [c.360]

Чистота воды, т. е. удельное ее электросопротивление, оказывает прямое влияние на интенсивность электрохимической коррозии. Было изучено влияние некоторых химических добавок хроматов, фосфатов, щелочных реагентов, органических веществ. Повышение pH свыше 7 эффективно снижало коррозию стали. Органические реагенты разлагаются при температуре выше 260° С и дают незначительный эффект.  [c.57]

I г р у п п а коррозионностойкие (нержавеющие) стали, стойкие к атмосферной, почвенной, щелочной, кислотной, солевой и другим видам электрохимической коррозии  [c.95]

Межкристаллитную коррозию котельного металла нужно рассматривать прежде всего как частный случай электрохимической коррозии, протекающей по границам зерен напряженного металла, находящегося в контакте со щелочным концентратом котловой воды. Появление коррозионных микрогальванических элементов вызывается различием потенциалов между телами кристаллитов, выполняющими роль катодов. Роль анодов выполняют разрушающиеся границы зерен, потенциал которых вследствие механических напряжений металла в этом месте сильно понижен. При известных условиях эти грани служат разрушающимися анодами. При повышенных концентрациях МаОН разность потенциалов между телом кристаллитов и- их гранями достигает при высоких температурах столь заметной величины, что ее достаточно для развития электрохимической коррозии. Таким образом, граничные слои зерен оказываются электрохимически повышенно активными, что и приводит к ускоренному протеканию коррозии по границам зерен между кристаллитами напряженного металла. Начавшись, процесс может усиливаться за счет того, что при наличии больших внутренних, напряжений происходит отделение зерна от зерна по ослабленным границам в результате образуется трещина и котловая вода получает возможность еще глубже протекать в металл, в связи с чем происходит разрыв межкристаллических прослоек металла и дальнейшее распространение межкристаллитной коррозии.  [c.167]


Коррозионностойкие (нержавеющие) стали, к которым относятся стали, обладающие стойкостью против электрохимической коррозии — атмосферной, почвенной, кислотной, щелочной и др.  [c.93]

В зависимости от характера агрессивной среды электрохимическая коррозия может быть структурной (вследствие неоднородности металла по структуре), атмосферной, почвенной (на металл действует почва), кислотной, щелочной, биологической (протекает в подземных условиях при участии микроорганизмов), в водных растворах солей, коррозия блуждающими токами, контактная (при контакте двух разнородных металлов).  [c.21]

Коррозия — это процесс физико-химического разрушения металла под влиянием внешней среды. По характеру процесса различают химическую и электрохимическую коррозию. В первом случае процесс окисления металла происходит при непосредственном воздействии соприкасающейся с ним среды без появления электрического тока, а во втором случае коррозия протекает в электролитах и сопровождается появлением электрического тока. В зависимости от характера агрессивной среды электрохимическая коррозия может быть атмосферной, почвенной, структурной (вследствие неоднородности металла по структуре), биологической (протекает в подземных условиях при участии микроорганизмов), щелочной, кислотной, контактной (при контакте двух разнородных металлов), коррозией, вызванной блуждающими токами или водными растворами солей. Стойкость против коррозии зависит от химического состава, структуры, состояния поверхности, напряженного состояния металла, а также химического состава, концентрации, температуры и скорости перемещения агрессивной среды по поверхности изделия. Мерой коррозионной стойкости является скорость коррозии металла в данных условиях и среде, которая выражается глубиной коррозии в миллиметрах в год или в потере массы в граммах за час на 1 м поверхности металла.  [c.20]

Коррозионностойкой (нержавеющей) называют сталь, обладающую высоким сопротивлением электрохимической коррозии (атмосферной, почвенной, кислотной, щелочной, солевой, морской и др.).  [c.9]

Охлаждение и очистка отходящих доменных газов осуществляются путем орошения их водой, содержащей значительные количества солей. В условиях эксплуатации скрубберы высокого давления разрушаются преимущественно в результате электрохимической коррозии. Причины коррозии скрубберов выявляли, изучая состав отходящих газов, водно-химический режим работы систем оборотного водоснабжения, состав оборотных и сточных вод, их температуру и технологию выплавки чугуна . Совершенствуя технологию выплавки чугуна, перешли на 100%-ный агломерат, что снизило запыленность отходящих газов и соответственно уменьшило переход щелочных компонентов из пыли в сточные воды. В связи с этим уменьшился щелочной резерв воды, повысилось давление газа под колошником, что также способствовало уменьшению запыленности газов. Кроме того, возросли требования к качеству доменного газа. Температура очищенного доменного газа должна находиться на уровне 40° С. Для такого охлаждения потребовалось увеличить удельный расход воды, подаваемой на газоочистку, соответственно изменилась и температура воды в скруббере.  [c.27]

Катодные замедлители в щелочных и нейтральных средах образуют на этих участках нерастворимые в воде фазовые пленки. Подобный экранирующий эффект наблюдается также у ингибиторов смешанного действия. Катодные ингибиторы в ряде случаев уменьшают наводороживание металла при его кислотном травлении. К ним можно отнести также поглотители кислорода. Ингибиторы катодного действия замедляют электрохимическую коррозию стали в кислых средах вследствие тормозящего действия ряда процессов.  [c.51]

При повышении температуры на наружной поверхности труб нижней радиационной части резко ускоряется высокотемпературная газовая коррозия, приводящая к утонению труб. Точный механизм процесса не установлен. Несомненно, что важную роль играют оксиды серы, ванадия и щелочных металлов. Судя по внешнему виду труб, строению отложений и окисных пленок, в наиболее теплонапряженных местах отложения находятся в расплавленном состоянии. Вероятно, что в этих местах протекает электрохимическая коррозия. Дополнительным импульсом для нее может служить наличие на одной и той же экранной трубе участков поверхности с различным тепловым потоком. Роль анода, где происходит растворение металла, играет лобовая, наиболее теплонапряженная, образующая. Оксиды ванадия и щелочных металлов снижают температуру плавления отложений. Кроме того, оксиды ванадия — сильный катализатор окислительных процессов. (Механизм их воздействия будет рассмотрен в разделе, посвященном коррозии конвективных гю-верхностей нагрева.)  [c.220]

К электрохимической коррозии относится также щелочная коррозия стали, имеющая место при содержании в котловой воде свыше 10% едкого натра, причем образуется магнитная окись-закись железа и выделяется водород. Это растворение подобно растворению железа кислотой, с той разницей, что продукты растворения выделяются в твердом виде, тогда как при кислоте они переходят в раствор.  [c.286]

Водородное охрупчивание можно считать вторичным процессом электрохимической коррозии металла котлов, протекающей с водородной деполяризацией кислотной, подщламовой, пароводяной и межкристаллитной (щелочной). При этом происходит накопление в стали водорода - его концентрацию, очевидно, можно считать косвенным показателем интенсивности протекания этих видов коррозии как в отдельности, так и в их сочетании. Поэтому определение концентрации его в металле весьма целесообразно для выяснения общего хода коррозии, протекающей в теплонапряженных местах поверхности нагрева с целью установления оптимальных (с точки зрения предупреждения коррозии) водно-химических и тепловых режимов.  [c.79]


Наряду с этим направлением возникла совершенно иная концепция в трактовке явлений электрохимической коррозии, вытекавшая из положений кинетики электродных процессов. Этот подход позволил совершенно по-новому подЬйти к механизму саморастворения металлов с идеально однородной поверхностью вначале на примере амальгам щелочных металлов и цинка. ДаЛее получили отчетливую электрохимическую интерпретацию процессы саморастворения таких твердых металлов, как кадмий, свинец, никель, железо. В предыдущих разделах этой главы показано, что исходной предпосылкой при этом является утверждение о возможности одновременного протекания на поверхности металла нескольких электрохимических процессов с присущими каждому из них кинетическими закономерностями.  [c.142]

Большинство автоклавов, отработавших 10 лет и более, в большей или меньшей степени поражены коррозией в нижней части цилиндрической оболочки. Появление коррозионных каверн объясняется наличием слоя конденсата при проведении термовлажностной обработки силикатных изделий в автоклаве. Даже при непрерывном отводе конденсат пропитывает опавшую силикатную массу, покрывающую нижнюю часть автоклава слоем значительной толщины. Химический анализ конденсата в автоклавах показывает щелочную реакцию (рН = 9н-12). Наличие в конденсате анионов 0Н , С1 , Si0 2, NO f, SO f и др. предопределяет условия для протекания электрохимической коррозии в слабом растворе щелочи при высокой температуре.  [c.372]

При необходимости питать котлы низкого давления сильио-минерализованной водой без ее деаэрации (например, в передвижных котлах) практически единственно возможным методом борьбы с электрохимической коррозией является введение хроматов в котловую волу. Сульфаты п особенно нитраты являются энергичными замедлителями процесса пнтеркристаллитной коррозии (щелочной хрупкости).  [c.190]

Группу коррозионностойких (нержавеющих) составляют стали, обладаюш,ие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.). К их числу относятся высокохромистые (12—30% Сг), хромоникелевые (17—207о Сг, 8—11% Ni, 0,12—0,14% С), хромомарганцовые и другие стали.  [c.18]

Деформируемые высоколегированные стали и сплавы на железоникелевой и никелевой основе по ГОСТ 5632—72 подразделяются на три группы I — коррозионностойкие (нержавеющие) стали, стойкие против электрохимической коррозии (атмосферной, щелочной, кислотной, солевой и др.) II — жаростойкие (окалиностойкие) стали и сплавы, стойкие против химического разрушения поверхности в газовых средах при температурах выше 550° С, работающие в ненагруженном или слабонагружен-ном состоянии III — жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной окалиностойкостью.  [c.47]

Межкристалл и тная кор.розия является частным случаем электрохимической коррозии, протекающей по границам зерен напряженного металла, находящегося в контакте с щелочным концентратом котло1Вой воды. Появление трещин межкристаллитной коррозии в металле паровых котлов вызывается наличием одновременно  [c.85]

Как известно, в двухкоптурпых схемах водный режим турбоустановок АЭС поддерживается щелочным за счет использования летучих щелочей, обычно аммиака и гидразина. Эти щелочи, концентрируясь иреимущест-вепно в паровой фазе, не представляют собой какой-либо опасности в части электрохимической коррозии турбин. В установках с кипящими реакторами применяется нейтральный режим без дозирования тех или иных веществ. В этих условиях содержание коррозионно-агрессивных примесей в паре, поступающем в турбины АЭС, чрезвычайно мало, и нужны очень высокие степени концентрирования этих примесей в жидкой фазе, чтобы вызвать коррозионные повреждения элементов проточной части турбин. Сложность физико-химических, гидродинамических и массообменных процессов, особенно при очень большой скорости изменения параметров пара в процессе расширения его в турбине, делают затруднительным даже качественный анализ процессов концентрации примесей в жидкой фазе, возникающей в процессе протекания пара через турбину. При оире-деленных условиях коррозионно-активные примеси, как было показано в гл. 1, могут существовать в виде следов жидкой или твердой фазы уже на входе в ЦИД.  [c.301]

Примечание. Коррозионностойкими (перж веющими) сталями (сплавами) называются материалы, обладающие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.)  [c.331]

Встречается в парогенераторах высокого давления в местах, где прн упаривании пленки воды в зазорах, неплотностях и под слое.м накипи возможно местное повышение концентрации едкого натра в котловой воде. При давлении J2,0 МПа 3%-ные растворы едкого натра вызывают заметную коррозию. Механизм процесса - химическое взаимодействие щелочи и защитной п.ленки на углеродистой стали с образованием растворимых продуктов (ферриты натрия) и процесс электрохимической коррозии с водородной 1еполяризацие 1 па обнажившейся поверхности. Продуктами щелочной коррозии являются газообразный водород и рыхлый слой окалины  [c.668]

Нельзя также исключить, что некоторое ослабление водородом границ зерен феррита, особенно у вершины трещины, способствует протеканию анодного механизма щелочного растрескивания. Это растрескивание обусловлено частичной пассивацией поверхности и разрушением защитных пленок по границам зерен. Межкристаллитный характер разрушения вызван электрохимической коррозией, интенсифицированной приложенными напряжениями [47, 218]. Особенно интенсивно щелочное растрескивание при высоком уровне растягивающих напряжений, близком к пределу текучести. Механизм разрушения связывают с хемосорбцией ионов ОН на дефектных местах поверхности, образующих межзеренную границу, и снижением поверхностной энергии у вершины трещины. Растрескивание сталей в щелочном растворе наблюдается в определенном диапазоне потенциалов (ф = -900... -500 мВ), соответствующем активно-пассивному переходу стали, и области существования растворимого гипоферрита НГеОз, оксидных пленок Fe(0H)2 и FegO . При значениях потенциала Ф -550 мВ обеспечивается стабильная пассивация железа.  [c.347]

Почти во всех водных растворах кислот и солей (исключая растворы фтористоводородной кислоты) магний и его сплавы нестойки, лишь в щелочной среде (pH = И,5) потенциал магния облагораживается, так как образующаяся на поверхности металла гидроокись магния стойка в щелочной среде. Наиболее распространенные способы защиты магния и его сплавов от электрохимической коррозии — изолирование сопрягаемых деталей прокладками из электроизоля1ционного материала (защита от контактной коррозии), нанесение лакокрасочных. покрытий и создание на поверхности окисных или хроматных пленок химическим или электрохимическим путем.  [c.216]

По характеру коррозионной среды различают следующие виды электрохимической коррозии металла теплоэнергетических установок, изготовленных из углеродистой стали кислородную, развивающуюся в нейтральной среде (содержащей депассиваторы) под действием растворенного кислорода воздуха кислотную — под действием растворов минеральных кислот, употребляемых при кислотных промывках и регенерации Н-катионитных фильтров углекислотную — под действием растворов угольной кислоты, поступающей из воздуха и образующейся при термическом и химическом разложении карбонатов и бикарбонатов щелочную (каустическая хрупкость) — под действием щелочных концентратов котловой воды, появляющихся при ее упаривании на поверхностях нагрева пароводяную — под действием воды и пара при вялой циркуляции котловой воды, нарушениях гидродинамики экранных труб, перегрева металла подшламовую — под дейст-  [c.57]


МПа, считали 1676—1886 тыс. кДж/(м -ч), т. с. 400—450 тыс. ккал/(мУч). Такой тепловой поток способен приводить к нарушению нормального пузырькового режима кипения в экранных трубах, переходу на нестабильное пленочное кипение, частым и значительным колебаниям температуры стенки, разрушению защитной пленки магнетита, коррозии оголенного металла под действием кипящей воды [2]. Исследования коррозионных повреждений экранных труб котлов ТГМ-151 (11 МПа) и ТГМ-96 (15,5 МПа) Волгоградской ТЭЦ-2 показали ошибочность изолированного рассмотрения основных факторов, определяющих повреждения, т. е. теплового напряжения и водно-химического режима. Эти факторы взаимосвязаны, и требуется сов.местное пх рассмотрение [3]. Там же было признано целесообразным условное разделение различных видов повреждений экранных труб от внутренней коррозии на два типа I — вязкие повреждения, когда результатом коррозии является потеря металла , т. е. утонение стенки трубы II— хрупкие повреждения, когда такое утоиенне отсутствует либо оно совсем незначительно. К первому типу отнесли пластичные повреждения в результате протекания под слоем относительно рыхлых отложений электрохимической коррозии (подшламовой, ракушечной, щелочной) [3]. К нему же, очевидно, относятся и повреждения в результате пароводяной и стояночной коррозии, протекающие как при наличии, так часто и при практическом отсутствии отложений. Ко второму типу отнесли бездеформационные хрупкие повреждения межкристаллптного характера, обусловленные влиянием водорода на металл труб [3, 4].  [c.10]


Смотреть страницы где упоминается термин Электрохимическая коррозия щелочная : [c.171]    [c.54]    [c.332]    [c.111]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.249 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.2 , c.360 ]



ПОИСК



Щелочная коррозия

Электрохимическая коррози

Электрохимическая коррозия

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте