Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектр электромагнитных излучений

Спектр электромагнитных излучений.....278  [c.213]

СПЕКТР ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИИ  [c.278]

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.  [c.279]

Современное учение о спектрах электромагнитного излучения базируется на квантовой теории, поэтому вначале остановимся на основных квантовых законах и понятиях.  [c.224]

Рис. 14.1. Спектр электромагнитных излучений (между смежными областями спектра нет резких границ) Рис. 14.1. Спектр электромагнитных излучений (между смежными областями спектра нет резких границ)

К естественным факторам, определяющим химическое действие электрогидравлического эффекта на вещество, следует отнести ударную волну, фронт которой представляет собой мощный генератор дефектов структуры, при высокой концентрации которых значительно увеличивается химическая активность вещества мощный расходящийся и сходящийся в зоне разряда поток жидкости, акустические поля широкого спектра электромагнитные излучения, а также тепловые и световые потоки. Электрические разряды ионизируют молекулы жидкости и растворенных в ней веществ, в результате чего появляются валентно насыщенные свободные радикалы, обладающие повышенной реакционной способностью.  [c.454]

В качестве света глаз человека в среднем воспринимает излучения с длинами волн в пределах от 380 до 780 нм. Это видимые излучения, которые занимают очень малую часть в спектре электромагнитных излучений. Спектральный состав излучения определяет его цвет. Если излучение имеет сложный состав и содержит в себе все длины волн, т. е. дает сплошной спектр, причем кривая распределения энергии близка к кривой распределения энергии в солнечном излучении, то глаз получает впечатление белого цвета.  [c.296]

Отметим, что свету соответствует сравнительно узкий диапазон длин волн в широком спектре электромагнитного излучения. Путем изучения рассеяния света можно получить лишь ограниченные сведения о свойствах вещества. Дополнительную информацию люжно получить, изучая рассеяние рентгеновских лучей и нейтронов. Рассеяние света позволяет исследовать флуктуации на расстояниях порядка половины длины волны падающего света, которая обычно велика по сравнению с размерами молекул и расстоянием между ними. К таким флуктуациям еще применимо термодинамическое рассмотрение, поэтому рассеяние света дает информацию о некоторых термодинамических величинах, например о сжимаемости. Исследование спектра рассеянного света позволяет изучать релаксационные процессы, определяющие временную зависимость тепловых флуктуаций.  [c.99]

Рис. 2.17. Спектр электромагнитного излучения Рис. 2.17. <a href="/info/364372">Спектр электромагнитного</a> излучения

Оптическое излучение, т. е. инфракрасная, видимая и ультрафиолетовая области спектра электромагнитного излучения, представляет известный интерес при сварке как источник нагрева. Такой источник — бесконтактный, и поэтому сварку можно вести в прозрачных для данного излучения средах или в закрытых баллонах. Весьма важно также, что в зону нагрева не вносятся примеси других веществ.  [c.52]

Следует заметить, что волновые и квантовые закономерности являются общими для всего спектра электромагнитного излучения. Только, в зависимости от длины волны, на первый план выступают  [c.10]

Освоение неиспользуемого участка спектра электромагнитных излучений  [c.13]

Необходимо знать, что спектр электромагнитных излучений обладает ограниченными ресурсами, поэтому его нужно экономно и эффективно использовать. Применение для связи электромагнитных волн видимого и инфракрасного диапазонов будет означать введение в эксплуатацию не используемой до настоящего времени части электромагнитного спектра. Имеет место и дополнительное преимущество  [c.25]

Для того чтобы охватить полностью сферы возможного применения лидаров, необходимо работать с несколькими лазерами, длины волн излучения которых перекрывают спектральный диапазон от ультрафиолетовой до инфракрасной области. В настоящее время наиболее многообещающими являются ИАГ — Nd- и СОг-лазеры, поскольку и тот и другой оказались надежными в многочисленных летных испытаниях. Одним из стандартных источников накачки перестраиваемых лазеров на красителях стал ИАГ — Nd-лазер, Это связано с тем, что он обеспечивает использование ультрафиолетовой области спектра электромагнитного излучения при работе на второй, третьей и даже четвертой гармониках. СОг-лазер может работать на многих линиях в спектральном диапазоне от 9 до И мкм  [c.427]

Несмотря на- то что лазеры использовались для зондирования атмосферы почти с момента их создания, прошло несколько лет, прежде чем они были установлены на борту летательных аппаратов или судов для исследования гидросферы. Дистанционное зондирование океанов, озер и рек нашей планеты возможно в видимом, инфракрасном и микроволновом диапазонах спектра электромагнитного излучения. Действительно, с борта судов, летательных аппаратов и спутников собрано огромное количество данных. Большая часть этой информации получена пассивными методами, до применения лазеров в работах по гидрографии. Лазер не только дополняет и расширяет типы применяемых измерений, но и сообщает новое качество гидрографической научно-исследовательской работе, так как позволяет сочетать поверхностную оптическую локацию с возможностью разрешения по глубине. Следует заметить, что ранее дистанционные методы использовались только для изучения поверхностного слоя воды. Основные причины этого — весьма малая глубина проникновения в воду инфракрасного и микроволнового излучения (рис. 10.1), а также то, что измерения в видимом диапазоне спектра электромагнитного излучения до появления гидрографических лидарных установок были по существу пассивными.  [c.471]

Обычное световое излучение часто называют полихроматическим светом, так как это электромагнитное излучение состоит из целого ряда волн различной длины, лежащих в диапазоне видимой части спектра. Этот диапазон условно делится на различные области, границы которых приведены в табл. 3.1.  [c.115]

Прослеживается взаимосвязь между образованием кластеров в растворах фуллеренов С60 и особенностями поглощения растворов СбО в различных растворителях при их облучении электромагнитным излучением в УФ/видимой области спектра [125]. Подробнее об этом будет рассказано в п. 5.1.8.  [c.225]

Электромагнитное излучение всех длин волн обусловливается колебаниями электрических зарядов, входящих в состав вещества, т. е. электронов и ионов. При этом колебания ионов, составляющих вещество, соответствуют излучению низкой частоты (инфракрасному) вследствие значительной массы колеблющихся зарядов. Излучение, возникающее в результате движения электронов, может иметь высокую частоту (видимое и ультрафиолетовое излучение), если электроны эти входят в состав атомов или молекул к, следовательно, удерживаются около своего положения равновесия значительными силами. В металлах, где много свободных электронов, излучение последних соответствует иному типу движения в таком случае нельзя говорить о колебаниях около положения равновесия свободные электроны, приведенные в движение, испытывают нерегулярное торможение, и их излучение приобретает характер импульсов, т. е. характеризуется спектром различных длин волн, среди которых могут быть хорошо представлены и волны низкой частоты.  [c.682]


Тепловое излучение — электромагнитное излучение, испускаемое веществом и возникающее за счет его внутренней энергии. Тепловое излучение имеет сплошной спектр. Положение максимума спектральной плотности энергетической светимости теплового излучения зависит от температуры вещества. С ее повышением возрастает общая энергия испускаемого теплового излучения, а максимум перемещается в область малых длин воли. Последнее всегда справедливо только для черного тела. Для других тел может быть и не так.  [c.189]

Рис. 45.55. Спектр электромагнитного фонового излучения во Вселенной сплошная линия — измерения, пунктир — теоретические оценки [82 Рис. 45.55. <a href="/info/364372">Спектр электромагнитного</a> фонового излучения во Вселенной <a href="/info/232485">сплошная линия</a> — измерения, пунктир — теоретические оценки [82
Тем не менее решения уравнения Шредингера должны существовать, и поэтому оказалось возможным ввести, как и в теории кристаллов, понятие плотности состояний iV(e). При этом величина Ы ъ)йг — количество состояний электронов с заданным направлением спина в единице объема и в интервале энергий между е и е + Если электроны рассеиваются слабо, то достаточно хорошим оказывается приближение свободных электронов. В этом случае, как и ранее, можно ввести сферическую поверхность Ферми, и Ы г) будет определяться уже известной формулой (4.89). Подобная ситуация реализуется, например, для жидких металлов. В случае сильного рассеяния N(е) может значительно отличаться от (4.89), и поверхность Ферми, строго говоря, ввести нельзя. Экспериментальные исследования преимущественно оптических и электрических свойств некристаллических веществ и их теоретический анализ показали, что и для этих материалов в энергетическом спектре электронов можно выделить зоны разрешенных и запрещенных энергий. Об этом свидетельствует, в частности,, резкий обрыв рая поглощения видимого или инфракрасного излучения для материалов (кванты электромагнитного излучения энергии, меньшей некоторой критической, не могут возбуждать электроны  [c.276]

Возбуждение спектров излучения. Материальные тела являются источниками электромагнитного излучения. В принципе существует два вида излучения, различающихся способом их возбуждения  [c.78]

Вращательные спектры. Излучать и поглощать электромагнитное излучение при переходах между вращательными уровнями энергии могут лишь молекулы, обладающие электрическим дипольным моментом. Поэтому  [c.319]

Старейшим методом определения спинов и магнитных моментов ядер является изучение сверхтонкой структуры оптических спектров атомов. Явление сверхтонкой структуры состоит в том, что магнитный момент ядра, взаимодействуя с магнитным моментом электронной оболочки, расщепляет электронные уровни за счет того, что энергия взаимодействия этих магнитных моментов зависит от их взаимной ориентации. Расщепление же электронных уровней приводит к тому, что оказывается расщепленной на несколько линий и спектральная частота соответствующего атомного электромагнитного излучения. Выясним закономерности этого расщепления.  [c.48]

Тепловым называют электромагнитное излучение, определяемое температурой тела. При температурах 273— 4000 К тепловое излучение занимает интервал длин волн примерно 0,7—1000 мкм, т. е. включает красный участок видимого спектра и инфракрасное излучение вплоть до миллиметровых волн. Видимый свет (0,4—0,7 мкм) является тепловым излучением поверхности Солнца, температура которой составляет 6000 К.  [c.62]

Оптическое излучение или свет — электромагнитное излучение с длиной волны 10 —10 мкм, в котором принято выделять ультрафиолетовую (УФ), видимую и инфракрасную (ИК) области спектра с длинами волн соответственно 10 . ..0,38 0,38. .. 0,78 и  [c.48]

Различные виды фотонного излучения имеют единую электромагнитную природу и отличаются только энергией фотонов, а следовательно, и частотой излучения [см. уравнение (5.21)]. Спектр электромагнитных излучений представлен на рис. 14.1. Фотоны самых высоких энергии составляют гамма-излучение. На противоположном конце энергетического спектра находится радиоволновое излучение. Все виды фотонов возникают в результате ускорения электрических зарядов. В случае гамма-излучения это — заряды частиц, составляющих атомное ядро. Поскольку по атомной шкале энергия связи нуклонов в ядре очень велика, внутриядерные колебания приводят к возникновению фотонов высоких энергий. Электроны, которые находятся на окружающих ядро атома оболочках, также могут порождать фотоны. При переходах электронов во внутренних оболочках, где энергии связи ве- лнки, возникает рентгеновское излучение. Колебания валентных электронов приводят к возникновению фотонов ультрафиолетового (УФ), видимого или инфракрасного (ИК) излучения. Ускорения зарядов в электрических цепях или электрические разряды в атмосфере служат источником фотонов еще более низких энергий — радиоволнового излучения, кото-  [c.333]


Видеокомпараторные системы относятся к классу поисковых технических средств, основанных на методах интроскопии и неразрушающего контроля и предназначены для диагностики поверхности диэлектрических материалов. Основа метода - оптический контроль в отраженном и проходящем излучении фиксированного диапазона широкого спектра электромагнитного излучения.  [c.649]

Эта задача объясняет частотный спектр электромагнитного излучения, называемого синхротронным. Его источником является релятивистский электрон, совершающий равномерное круговое движение с частотой Vj. Можно показать (см. главу 7), что, если такое движение совершает нерелятивистский электрон, то он испускает электромагнитное излучение одной частоты Vj. Причина в том, что электрическое поле в излучении нерелятивистского электрона пропорционально той компоненте ускорения заряда, которая перпендикулярна радиусу-вектору от заряда к наблюдателю. При круговом движении эта проекция ускорения представляет собой гармоническое движение. Поэтому, для нерелятивистского электрона излучаемое поле пропорционально os oi или sin oi. Для релятивистского электрона вpeмeннaя зависимость излучаемого поля не определяется os (x>ii. Вместо этого интенсивность излучения сильно сконцентрирована по направлению мгновенной скорости заряда. Когда электрон движется прямо на наблюдателя, он испускает излучение, которое будет обнаружено наблюдателем позже. Излучение, испускаемое в другие моменты времени, не достигнет наблюдателя. Таким образом, электрическое поле, измеренное наблюдателем, имеет определенную величину в течение короткого интервала At однажды за каждый период Ti и будет близко к нулю в остальную часть периода. Поэтому наблюдаемый спектр состоит из частот Vj= 1/Tj и гармоник 2v,, Sv и т. д. до максимальной (главной) частоты, близкой к I/At. Покажите, что временной интервал At определяется из приблизительного равенства At/Tit AQ/2n, где А0 — полная угловая ширина .  [c.101]

Оптика, точнее — физическая оптика, есть раздел фпзики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра электромагнитного излучения — инфракрасную и ультрафиолетовую. Различные участки спектра электромагнитного излучения отличаются друг от друга длиной волны % и частотой v — величинами, характеризующими не только волновые, но и квантовые свойства электромагнитного излучения. Электромагнитный спектр принято делить на радиоволны, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. З ги участки спектра различаются не по своей физической природе, а по способу генерации и приема излучения. Поэтому между ними нет резких переходов, сами участки перекрываются, а границы между ними условны.  [c.9]

Общей тенденцией в развитии электронной аппаратуры является переход на использование коротковолнового диапазона спектра электромагнитного излучения. Причем последние два десятилетия характеризуются интенсивным освоением оптического диапазона. Исключительно высокая информационная емкость светового поля как носителя информации, высокая скорость распространения оптических сигналов по ипформационцым каналам и принципиальная легкость осуществления математических операций с даумернымн световыми полями предопределили широкий интерес к использованию оптических методов приема, передачи и обработки информации в различных видах радиоэлектронной и оптико-электронной аппаратуры (РЭА и ОЭА). По своей значимости применение оптического излучения при обработке информации в РЭА и ОЭА уже в ближайшем будущем будет не меньшим, чем переход от электровакуумных приборов к полупроводниковым, а от Них — к интегральным микросхемам.  [c.3]

В перспективе на промыптленных роботах будет применяться комплекс датчиков различного принципа действия, в которых широко используется весь спектр электромагнитного излучения, ультразвук, тензометрия, фотоэлектрические и другие методы получения и преобразования информации.  [c.56]

В конце 60-х годов в работе [204] была показана возможность применения лазера, установленного на борту летательного аппарата и работающего в сине-зеленом участке спектра электромагнитного излучения, для подводной топографической съемки при использовании временного интервала между принятыми обратными сигналами, отраженными от поверхности воды и поверхности подводного объекта, в качестве меры толщины слоя воды (рис. 10.2). С помощью импульсного неонового лазера (60 мкДж) в ночное время у берегов оз. Онтарио с высоты 150 м удалось зарегистрировать глубину 8 м. Длительность импульса лазера составляла 3 не, что позволило достигнуть пространственного разрешения 0,34 м. Авторы указали.  [c.471]

Точность измерения скорости света определяется в этом случае, во-первых, тем, насколько стабилен данный источник, и, во-вторых, тем, с какой точностью удается измерить частоту и длину волны излучения. Источниками электромагнитного излучения, наиболее удовлетворяющими этим требованиям, являются лазеры. Измерение длины В0Л1ГЫ , основанное на явлении интерференции света, производится с ошибкой, не превышающей величину порядка 10 , Измерение частоты излучения основано на технике нелинейного преобразования частоты. Используемый прибор (например, полупроводниковый диод), приняв синусоидальное колебание некоторой частоты, дает на выходе колебания более высокой частоты — удвоенной, утроенной и т. д. Этот метод с помощью нелинейного элемента излучс1П1Я кратной частоты позволяет измерять частоту излучения лазера и сравнивать его с частотами, измеренным прежде. Согласно результатам изме-рени , в1> пол 1ен ЫМ этим методом в 1972 г., скорость света в вакууме равна (299792456,2 1,1) м/с. Новые методы разработки нелинейных фотодиодов, испо.и.зусмых для смещения частот светового диапазона спектра, позволят в будущем увеличить точность лазерных измерений скорости света.  [c.418]

Очевидно, что аномальная дисперсия возникает не случайно, а непосредственно связана с наличием полос поглощения у исследуемого вещества. Она отсутствует в той области спектра, где нет полос поглощения. Так, например, спектры всех прозрачных тел (многие газы, вода, стекло, кварц и др.) не имеют полос поглощения в видимой области и у них в этом диапазоне наблюдается только нормальная дисперсия dnjdX < 0). В ультрафиолетовой и инфракрасной областях многие из тел интенсивно поглощают электромагнитное излучение — там должна наблюдаться также и аномальная дисперсия.  [c.137]

Разберемся подробнее в этом важном вопросе. Соотношение Annl mn указывает, что отношение коэффициентов Эйнштейна для спонтанного и вынужденного переходов при переходе от видимой части спектра (л 10" см) к метровым радиоволнам должно уменьшиться примерно в 10 раз. Поэтому не должна удивлять разница в механизме процессов излучения для этих двух столь различных диапазонов спектра электромагнитных волн.  [c.429]

Другим видом энергетических потерь заряженной частицы М, пролетающей через вещество, являются потери энергии иа тормозное излучение. Особенно велики эти потери для электронов больших энергий. Электрон, [фолетающий через вещество, испытывает сильное взаимодействие со стороны электрического поля атомных ядер вещества и претерневает отклонение. Так как заряд ядра Ze значительно больше заряда электрона, а масса электрона т очень мала по сравнению с массой ядра (Мдд 1836 т), то электрон испытывает резкое торможение в иоле ядра и при этом теряет значительную часть своей энергии, испуская квант (фотон) электромагнитного излучения. Эти потери энергии вследствие излучения называются радиационными потерями или потерями на тормозное излучение. Примером радиацнонного излучения электронов является рентгеновское излучение (имеющее сплошной спектр), возникающее прн бомбардировке антикатода рентгеновской трубки электронами.  [c.28]


Внешним фотоэффектом или, иначе, фотоэлектронной эмиссией называют испускание электронов веществом, про-исходяш,ее под действием электромагнитного излучения. Длина волны излучения должна находиться в диапазоне значений примерно от 10 до 10 м этот диапазон включает в себя оптическое излучение (без инфракрасной части спектра) и рентгеновское излучение. Энергия фотона в указанном диапазоне изменяется от 1 до 10 эВ (1 эВ = 1,6-Ю" Дж). Вещество может находиться в разных агрегатных состояниях — твердом, жидком, газообразном. В последнем случае используют термин фотоионизадия газа . Наиболее интересен в практическом отношении внеш-  [c.155]

Оптические квантовые генераторы (ОКГ), или лазеры, дают мощное когерентное излучение, которое невозможно получить при использовании обычных источников света. Если раньше когерентное электромагнитное излучение получалось и широко использовалось только в радиодиапазо не, то с появлением лазеров сфера его применения распространилась и на оптический диапазон спектра. Действие ОКГ основано на явлении вынужденного излучения, которое было открыто Эйнштейном в 1917 г. Идея использования этого явления для усиления света в среде с инверсной населенностью энергетических уровней принадлежит В. А. Фабриканту (1939). Первые квантовые генераторы были созданы в 1954 г. Н. Г. Басовым и А. М. Прохоровым в СССР и Ч. Таунсом в США. В них использовалось вынужденное излучение возбужденных молекул аммиака на длине волны А,= 1,27 см. В 1960 г. был создан лазер на кристалле рубина, работающий в видимой области спектра (А = 694,3 нм), а в 1961 г. — лазер на смеси газов гелия и неона. В настоящее время имеются самые разнообразные типы лазеров, использующие в качестве рабочих сред газы, жидкости и твердые тела. Мощное и высококогерентное излучение ОКГ находит широкое применение в различных областях науки и техники.  [c.278]


Смотреть страницы где упоминается термин Спектр электромагнитных излучений : [c.278]    [c.6]    [c.57]    [c.3]    [c.350]    [c.406]    [c.7]    [c.124]    [c.67]    [c.249]    [c.199]   
Физика. Справочные материалы (1991) -- [ c.278 ]



ПОИСК



Генерация и усиление электромагнитного излучения в результате нелинейного преобразования спектра оптической накачки

Спектр излучения

Спектр электромагнитных колебаний и оптическое излучение

Электромагнитные

Электромагнитные переходы (широкий спектр излучения)

Электромагнитный спектр



© 2025 Mash-xxl.info Реклама на сайте