Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ванадий 148 — Влияние температуры свойства ванадия

Рис. 23. Влияние температуры на механические свойства ванадия разной чистоты Рис. 23. <a href="/info/222925">Влияние температуры</a> на механические <a href="/info/62862">свойства ванадия</a> разной чистоты

Изучение влияния температуры старения на свойства стали (350, 450, 550 С, 10 ч) подтвердило, что наибольшая стабильность обеспечивается присадками ванадия. Так при повы. ении температу-  [c.99]

Влияние температуры на свойства ванадия  [c.148]

Ванадий 148 Влияние температуры на свойства ванадия 148 В ата минеральная 260 Вермикулит вспученный 260 Вещества поверхностно-активные 245  [c.519]

Сплавы титана имеют несколько меньшую жаропрочность, чем специальные стали. Рабочая температура их использования составляет не выше 550—600 °С, При повышении температуры более 500 °С титан и его сплавы легко окисляются и интенсивно поглощают водород и другие газы (азот, кислород). Газы образуют с титаном твердые растворы внедрения разной предельной концентрации, в то время, как легирующие элементы (алюминий, ванадий, олово и др.) образуют твердые растворы замещения. Примеси внедрения оказывают сильное влияние на свойства титана, увеличивая прочность н резко уменьшая вязкость и пластичность. При технических и эксплуатационных нагревах необходимо принимать меры для защиты титана от газонасыщения. Кроме газов, вредной примесью для титана является углерод, образующий карбиды.  [c.221]

Жаропрочность сталей ванадий повышает вследствие образования дисперсных карбидов, нитридов, способствуя тем самым сохранению при рабочих температурах высокой твердости, малого коэффициента теплового расширения, устойчивости против разгара и высокотемпературного истирания. Он улучшает технологичность инструментальных сталей, снижает чувствительность к перегреву, обезуглероживанию, трещинообразованию, повышает технологическую пластичность. На литейные технологические свойства сталей и сплавов влияние ванадия исследовано недостаточно.  [c.87]

ТАБЛИЦА 32. ВЛИЯНИЕ НИЗКИХ ТЕМПЕРАТУР НА МЕХАНИЧЕСКИЕ СВОЙСТВА ИОДИДНОГО И ВОССТАНОВЛЕННОГО КАЛЬЦИЕМ ВАНАДИЯ [I]  [c.98]

В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонность стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49].  [c.39]


Когда нет необходимого оборудования или когда процесс вакуумного раскисления не подходит по каким-либо причинам, добавляют элементы, которые сами реагируют с кислородом, такие, как кремний, алюминий, титан, ниобий, ванадий или цирконий (марганец также действует как раскислитель). Эти металлы, особенно когда они присутствуют в избытке, оказывают значительное влияние на окончательные свойства стали. Наиболее часто используется в качестве раскислителя кремний, который присутствует в виде твердого раствора в феррите и оказывает заметное влияние на ударную вязкость при низкой температуре. Алюминий влияет на свойства стали по-разному. Он очищает зерна стали от кислорода и реагирует с азотом, увеличивая тем самым ударную вязкость углеродистых сталей, но, будучи добавлен в заметном количестве, способствует графитизации и ослаблению границ зерен, действуя тем самым на прочность и свариваемость. Окись алюминия, которая является продуктом реакции с кислородом, может оставаться в стали во, взвешенном состоянии, образуя неметаллические включения. Другими возможными раскислителями могут быть титан, цирконий, ниобий и ванадий, которые в одних случаях могут оказаться полезными, а в других— вредными, поэтому использование этих элементов ограничивается созданием определенных сортов сталей, где их влияние проявляется с положительной стороны.  [c.51]

Еще один легирующий элемент—азот — попадает в сталь из атмосферы. Хотя азот обычно присутствует в значительно меньшем количестве, чем углерод, действие их подобно. Азот оказывает более сильное влияние на стабилизацию аустенита и упрочнение, и определенное количество его может серьезно влиять на пластичность при низкой температуре из-за выпадения нитридов при нагреве до 200° С после холодной деформации. Это явление известно как деформационное старение. Когда азот вызывает какие-либо нежелательные эффекты, его можно связать добавками ванадия, который образует с ним нитриды. Если добавки азота улучшают важные для нас свойства, содержание его может быть увеличено. Азот можно вводить при плавлении под давлением. Кроме того, азотом можно насытить поверхностные слои стали, содержащие алюминий, в процессе азотирования в атмосфере, обогащенной азотом, такой, как атмосфера диссоциированного аммиака. Кроме того, вместе с углеродом, азот может насыщать сталь при нагреве в расплавленных цианистых солях. Эти два наиболее распространенных метода создают твердый, но тонкий поверхностный слой. Азот содержится в сталях, изготовленных с применением кислородного дутья, в небольшом количестве и может быть почти полностью удален вакуумной обработкой.  [c.51]

Влияние ванадия (наиболее употребляемого после алюминия легирующего элемента) на прочностные свойства титана при разных температурах показано на рис. 40.  [c.98]

Механизм воздействия присадок ниобия и ванадия на свойства сталей по существу идентичен. Выделение карбидов (карбонитридов) в таких сталях после прокатки происходит в у- а-областях, усиливается с увеличением степени обжатия и уменьшается с повышением скорости охлаждения. Наличие таких частиц в стали приводит к измельчению зерна и блоков мозаики, а также к увеличению плотности дислокаций и сопротивления их передвижению. Ввиду более высокой температуры растворения карбонитрида ниобия (>1050° С) по сравнению с карбидом ванадия (950° С) упрочняющий эффект от присадок ниобия наблюдается после нагрева до высоких температур (например, после нагрева под прокатку), в то время как ванадий оказывает заметное влияние уже после нагрева под нормализацию (- 930° С).  [c.126]

Технические средства для быстрого и равномерного охлаждения металла, прокатываемого на листовых станах, пока отсутствуют, поэтому контролем качества проката в этом случае может служить температура конца прокатки, которая оказывает заметное влияние на уровень прочностных и вязких свойств [131, с. 188]. На модифицированных ниобием или ванадием сталях преимущества регулируемой прокатки на относительно тонких листах достигаются при ограничении температуры конца прокатки примерно 920° С. Следует подчеркнуть, что из-за меньшей скорости прокатки на листовых станах по сравнению с непрерывными эффект упрочнения от присадок ниобия в первом случае несколько меньше, так как часть карбонитридов выделяется уже в аустените во время прокатки.  [c.132]


Растворение карбидов типа Ме Сц происходит в интервале 1000—1100° С, а карбидов Nb или Ti — ири более высокой температуре. Поэтому обычно применяемая для стали на основе Х13 без специальных легирующих добавок температура нагрева под закалку, соответствующая Ас + 50 град в данном случае недостаточна. Для 12%-ных хромистых нержавеющих сталей, содержащих указанные легирующие элементы, ири закалке используют более высокие температуры нагрева (1050—1100 С), превышающие температуру Ас на 150—200 град. Следует, однако, отметить, что при таких более высоких температурах в структуре остается значительное (соответствующее содержанию углерода) количество карбидов титана или ниобия. Карбиды титана, ниобия, ванадия, в меньшей степени молибдена и вольфрама, уменьшают склонность сталей к росту зерна, однако эти элементы способствуют образованию б-феррита, что может оказать отрицательное влияние на механические свойства стали. В табл. 13 приводятся некоторые данные о свойствах наиболее часто встречающихся в таких нержавеющих сталях карбидов, образующихся в связи с введением в сталь указанных легирующих элементов.  [c.78]

Таким образом, легирующие элементы при введении их в обычном для конструкционных сталей количестве не оказывают качественного влияния на графики температурной зависимости свойств, а оказывают в основном количественное влияние, т. е. ослабляют или усиливают эффект синеломкости стали, расширяют или сужают интервал температур синеломкости, изменяют положение его на температурной шкале. И только марганец и такие сильно карбидообразующие элементы, как титан и ванадий, наряду с количественными вносят и качественные изменения — на графиках наряду с эффектом синеломкости появляется более высокотемпературный эффект. Это говорит о том, что природа синеломкости углеродистых и легированных сталей одинакова и что закономерности развития синеломкости, установленные для углеродистых сталей, могут быть распространены и на легированные стали.  [c.230]

В работах [39, 100, 122—128] было изучено влияние криогенных температур па механические свойства титана, легированного различными элементами. По данным этих работ, на рис. 60 приведено влияние легирующих элементов на механические свойства титана при температурах жидкого азота и жидкого водорода. Введение в титан алюминия до 1,5% и ванадия в количествах, меньших 5%, не приводит к существенному уменьшению пластичности при криогенных температурах при  [c.98]

Учение об изменении внутреннего строения и физико-механических свойств сплавов в результате теплового воздействия, не исчезающих после прекращения этого воздействия, составляет теоретические основы термической обработки. Общее представление о превращениях, протекающих в железоуглеродистых сплавах в результате теплового воздействия, можно получить из диаграммы состояния железо — цементит и железо — углерод. Как в сталях, так и в чугунах всегда присутствуют кремний, марганец, фосфор, сера, а в легированных сплавах — никель, хром, молибден, медь, ванадий, титан и др. Легирующие элементы и примеси изменяют положение линий диаграммы, на которых отложены критические точки структурных превращений. Одни элементы снижают температуру превращений, а другие — повышают. Без учета влияния этих элементов невозможно правильно, пользуясь только лишь диаграммой, разработать режимы термической обработки.  [c.92]

В состав современных титановых сплавов входят легирующие элементы, обеспечивающие получение требуемой структуры и свойств, а также необходимой стабильности сплава при эксплуатации. В сплавы вводят один или несколько элементов, растворяющихся в твердом растворе и повышающих его прочность при обычных и высоких температурах. С повышением прочности сплава понижается его пластичность, особенно в тех случаях, когда вводимый легирующий элемент растворяется в титане неполностью и образует с ним химические соединения. Сильно понижают пластичность титановых сплавов железо и хром. Влияние этих элементов усиливается при их высоком содержании, когда образуются интерметаллиды. Умеренно действуют на интенсивность повышения прочности и понижения пластичности титановых сплавов олово и ванадий. ......  [c.17]

Влияние легирующих элементов на свойства стали. Легирование стали никелем повышает ее прокаливаемость этому же способствуют присадки марганца, молибдена, хрома, бора. Никель увеличивает также вязкость и пластичность стали, понижает температуру порога хладноломкости. Однако никель дорог, поэтому его вводят в сочетании с марганцем или хромом. Понижение порога хладноломкости достигается также присадкой хрома, молибдена, вольфрама, ванадия, титана, ниобия и циркония, которые образуют дисперсные труднорастворимые в аустените карбиды и препятствуют росту зерна аустенита. Рост зерна аустенита задерживается также присадкой алюминия, присутствующего в виде дисперсных оксидов. Молибден и вольфрам повышают также стойкость стали к отпуску. Кобальт (как и никель) полностью взаимно растворим с железом, повышает точку и способствует понижению количества остаточного аустенита в закаленной стали.  [c.112]

Рис. 48. Влияние температуры на ме.танические свойства ванадия с различным содержанием примесей Рис. 48. <a href="/info/222925">Влияние температуры</a> на ме.танические <a href="/info/62862">свойства ванадия</a> с различным содержанием примесей

Влияние легирующих элементов, образующих твердые растворы замещения (в данном случае Ti, Nb, Mo, W), на механические свойства и порог хладиопомкосга ванадия исследовалось достаточно подробно. Влияние перечисленных элементов на свойства ванадия при комнатной температуре показано на рис. 29.  [c.34]

Проведенные исследования позволили разработать новую хро-моникельмарганцевую жаропрочную сталь аустенитного класса, содержащую небольшое количество никеля [28 ]. Химический состав стали следующий 0,3—0,45% С, доО,35 % Si, 10,0—12,5% Сг, 11,5 -13,5% №, 6—11% Мп, 3,2 -4,2% А1, 1,4—2,0% V. Высокая жаропрочность разработанной стали связана с образованием гетерогенной структуры С мелкодисперсным выделением двух упрочняющих фаз интерметаллического соединения NiAl.H карбидов ванадия. Присутствие этих фаз в стали установлено рентгеноструктурным фазовым анализом. Исследовали микроструктуру и прочностные свойства стали после различных режимов термической ебработки. Образцы были изготовлены -из проката трех опытных плавок стали (№ 1, 2, 3, табл. 47). Изучалось влияние температуры и времени выдержки при закалке и старении на твердость и длительную прочность стали.  [c.171]

Влияние ванадия на механические свойства штамповых ей неоднозначно При содержании до 1,0 % ванадий ышает прочность и пластичность высокоуглеродистых реднеуглеродистых ( 0,4% С) сталей Однако при оких температурах ванадий в повышенных количествах ет снижать пластичность Снижение пластичности ста с высоким содержанием ванадия при обработке на персионное твердение может приводить к уменьшению  [c.382]

Дисперсионное и дисперсное упрочнения сплавов ванадия до последнего времени не находили широкого применения. Это, видимо, можно объяснить тем, что твердорастворное легирование ванадия, особенно при высоком содержании легирующих элементов, обеспечивает упрочнение, сохраняющееся до высоких для ванадия рабочих температур (—1000° С) без резкого снижения его низкотемпературной пластичности (рис. 116) [1, 2]. Вместе с тем стали появляться работы по исследованию закономерностей формирования гетерофазных структур в системах V—Meiv—С [10,11] по влиянию добавок углерода и азота на прочностные свойства сплавов ванадия, содержащих один или несколько из элементов цирконий, ниобий, титан [12, 13, 2]. Сведения пока очень ограниченные, одна-, ко уже сейчас прослеживается закономерность в изменениях свойств  [c.278]

Температурная зависимость воспримчивости карбида ванадия (рис. 1.15) хорошо согласуется с литературными данными [141,142] для крупнокристаллических образцов. Это означает слабое влияние наноструктуры карбида ванадия на его электронные свойства. Порогпок карбида ванадия V o,875 был спрессован холодным способом при давлении 10 МПа. Плотность прессовки составляла 68 % от теоретической плотности карбида ванадия, что существенно выгпе насыпной плотности норогпка, равной 36 %. Ступенчатое спекание таблетки производилось в вакууме 1 10 Па с 400 до 2000 К с гпагом 100 К и выдержкой при каждой температуре 2 часа. Существенного изменения илотности спеченного образца по сравнению с плотностью прессовки обнаружить не удалось.  [c.61]

На поведение материала под нагрузкой, его прочность, способность деформироваться существенное влияние оказывает температура. В однофазных металлах это влияние связано с изменением прочности границ зерен и прочности их тела. При этом существенную роль играет тип кристаллической решетки. Так, если в металлах с объемноцентрированной решеткой (железо, молибден, хром, ванадий, вольфрам) при низких температурах предел текучести заметно изменяется, то у металлов с гранецентрированной кубической решеткой (медь, алюминий, серебро, никель, свинец, золото, платина) это изменение почти отсутствует 1346]. Влияние температуры на свойства металлов с гексагональной решеткой (цинк, кадмий, магний, титан, цирконий, беррил-лий) не имеет общих закономерностей [527 ]. У некоторых однофазных металлов с изменением температуры наблюдается выделение дисперсных частиц вновь образовавшейся фазы, что иногда увеличивает склонность к хрупкому разрушению (старение, некоторые виды тепловой хрупкости).  [c.165]

Установлено отрицательное влияние кремния и ванадия в сварочном шве на коррозионную стойкость в окислительных средах сварных соединений из аустенитно-ферритных сталей [4]. Таким образом, при выборе присадочного материала необходимо стремиться обеспечить равенство не только механических свойств шва и основного металла и стойкость шва против межкристаллитной коррозии, но и равенство общей коррозионной стойкости металла всех зон сварного соединения. Необходимо учитывать влияние карбидообразующих элементов (Т1 и МЬ) на свойства швов в соединениях аустенитно-ферритных сталей, так как для обеспечения стойкости против межкристаллитной коррозии при содержании углерода >0,07 % необходимы стабилизаторы (карбидообразующие элементы). Сталь 08Х22Н6Т стойка в азотной кислоте 65 %-ной концентрации до температуры 50 °С, в 56 %-ной до температуры 70 °С, в 30 %-ной до температуры кипения. Сталь 08Х21Н6М2Т стойка в муравьиной кислоте независимо от концентрации при температурах до 60 °С, в 30 %-ной кипящей и в 85°/о-ной фосфорной кислоте при Г 80°С, в 10 %-ной серной кислоте.  [c.290]

Одним из этапов процесса обезуглероживания является диффузия углерода в феррите. Известно, что легирование феррита хромом резко замедляет процессы диффузии в нем элементов внедрения, в частности, углерода. Поэтому можно предположить, что повышение водородостойкости хромистых сталей происходит не только за счет наличия в них стабильных карбидов, но и вследствие влияния хрома, растворенного в феррите, на скорость диффузии углерода. Для проверки этого предооложения были поставлены специальные исследования и определено влияние отдельных легирующих элементов (вольфрама, ванадия, ниобия и титана) на длительную водородную стойкость стали с 0,16 -0,18% С и связь между фазовым составом, механическими свойствами и водородостойкостью сталей под давлением водорода 800 атм при температуре 600.  [c.157]

Исследование влияния ванадия проводилось н стали с 4% AI и 0,1% С, показавшей наилучшие свойства азотированного слоя. Ванадий добавлялся в количестве 1,0 1,8 и 2,2%. В противоположность молибдену, который в присутствии, алюминия не изменял свойства азотированного слоя, ванадий резко повысил его Характеристики. С повышением содержания ванадия йривес увеличивался (см, рис. 79), причем эффективность влияния ванадия оказалась значительно больше, чем алюминия. Обычно с увеличением легированности стали привес возрастает, а толщина слоя уменьшается. При добавлений ванадия к стали с люминием наблюдалось повышение привеса и толщины слоя при всех температурах азотирования. Значительное увеличение толщины слоя до 0,57 мм получено на стали с 2% V после азотирования при  [c.191]

Серия V. С целью улучшения механических свойств, коли чество углерода в стали с 4% А1 и 1% V было доведено до 0,3%. Увеличение содержания углерода повысило одновременно и предел прочности до 124 кгс/мм и ударную вязкость до 5 кгс м/см , Пр этом улучшилась и технологичность стали при горячей образке давлением, сталь стала менее чувствительной к температуре кбнца ковки. Такое влияние углерода объясняется, во-первых, образованием карбидов, препятствующих росту зерна и, во-вторых уменьшением количества ванадия, остающегося в твердом растворе. Ванадий, как известно, увеличивает прочность и твердость феррита, но уменьшает его пластичность. Следо-  [c.192]


Кислород может вызывать горячие трещины при сварке аустенитных сталей. Его действие на первичную структуру, как указывалось, связано с окислением ферритообразующих элементов (титана, алюминия, кремния, ванадия, хрома) и находится в противодействии измельчающему влиянию азота. Изменения структуры, обусловленные действием кислорода, приводят к снижению стойкости шва против трещин. Кислород, по-видимому, способен сегрегировать в межкристаллических прослойках и изменять их состав и свойства. Усиление вредного влияния серы, ниобия и других элементов при сварке под флюсами с высоким содержанием SiOj, возможно, связано с образованием соответствующих соединений с кислородом, снижающих температуру затвердевания межкристаллических прослоек. Опыты по введению в зону сварки ржавчины, окалины и газообразного кислорода свидетельствуют о его способности вызывать горячие трещины в швах.  [c.216]

Количественное соотношение элементов было получено как оптимальное по результатам исследования раздельного и комплексного легирования и его влияния на механические свойства. Установлено, что наилучшее сочетание прочности и пластичности обеспечивает двойное легирование ванадием и вольфрамом. Кроме того, вольфрам обладает низким коэффициентом линейного расширения (4-10 1/°С). Снижению коэффициента термического расширения и повышению температуры Нееля способствует и дисперсионное твердение. Таким образом в сталях 50Г20ФВ7 и 50Г20Х4ФВ7 реализованы два способа регулирования коэффициента термического расширения  [c.295]

Влияние основных компонентов на свойства порошковых сталей достаточно хорошо описано в литературе [24, 25], Однако технико-экономические факторы накладывают определенные ограничения при использовании легирующих элементов при производстве порошковых сталей. Вольфрам и ванадий являются дорогостоящими элементами и введение их в порошковую сталь экономически нецелесообразно. Учитывая их определенную ограниченность по возможности применения в массовом производстве можно отметить, что серийная технология производства порошковых сталей с использованием порошков вольфрама и ванадия экономически и технологически невыгодна. Применение порошка алюминия в смеси с железным порошком не приводит к существенному улучшению свойств спеченных сталей из-за высокого сродства алюминия к кислороду и малой растворимости алюмния в железе при температурах спекания — эти факторы отрицательно влияют на физико-механические свойства порошковых сталей.  [c.49]

Стали с нитридным упрочнением. Нитридная или карбонитридная фаза наряду с карбидной может служить реагентом для измельчения зерна (в отдельных случаях весьма эффективно) и отчасти для вызова дисперсионного твердения. В горячекатаном состоянии наиболее заметное упрочнение марганцевой стали (типа 16Г2) оказывают нитриды ванадия, молибдена и вольфрама ( повышение предела текучести до 50%), но после нормализации степень упрочнения снижается до 20— 30% при одновременном существенном улучшении ударной вязкости при минусовых температурах (на уровне 4—6 кГ-м1см при —40°С). Не установлено упрочняющего влияния нитридов циркония, а нитриды алюминия незначительно упрочняют низколегированную сталь (примерно на 15%) [135]. Сопоставление механических свойств нормализованной стали с 0,15% С, 1,4% Мп и 0,9% Si при различном содержании нитридов алюминия приводится ниже  [c.142]

В настоящее время серийно применяется довольно большое число титановых сплавов. Большой диапа.зон их структур и свойств обусловлен, в частности, полиморфизмом титана, хорошей растворимостью многих элементов (по крайпеп мере в одной из фаз), а также образованием химических соединений, обладающих переменной растворимостью в титане. В соответствии с приведенными выше диаграммами состояния все легирующие элементы по влиянию на полиморфизм титана можно разбить на три группы. Первая группа представлена а-стабилизаторами — элементами, повышающими стабильность а-фазы из металлов к числу а-стабилизаторов относится алюминий. Ко второй группе принадлежат -стабилизаторы — элементы, повышающие стабильность р-фазы эти элементы в свою очередь можно разбить на две подгруппы. В сплавах титана с элементами первой подгруппы при достаточно низкой тедшературе происходит эвтектоидный распад р-фазы к числу таких элементов относятся хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт. В сплавах титана с элементами второй подгруппы при достаточно высокой их концентрации Р-твердый растнор сохраняется до комнатной температуры, не претерпевая эвтектоидного распада. Такие элементы иногда называют изоморфными р-стабилизаторами. К ним пр1шадле-жат ванадий, молибден, ниобий, тантал. Третья группа прелстаклена нейтральными упрочнителями, т. е. легирующими элементами, мало  [c.402]

Оценить истинные механические свойства тугоплавких металлов при комнатной температуре довольно трудно из-за существенного влияния на эти свойства ничтожно малых количеств примесей, образующих твердые растворы внедрения. Однако из табл. IV. 14 ясно видно, что хром и вольфрам обладают низкой пластичностью прг= 1Сомнатной температуре, в то время как ванадий, ниобий и тантал отличаются высокой пластичностью. Относительно свойств молибдена имеются противоречивые данные.  [c.468]

Необходимо отметить, что вышеуказанные положения правильны для случая работы деталей нри обычных температурах. В области низких температур характер легирования может оказывать влияние на ударную-вязкость стали. Например, марки стали, содержащие никель, обнаруживают при низкотемпературных испытаниях более высокий запас вязкости. Кроме того, легирование стали малыми добавками 1гекоторых элементов, например молибденом и, особенно ванадием,, может влиять на свойства стали и, в частности, на повышение предела упругости и ударной вязкости при одинаковой прочности и прокаливаемости.  [c.210]

Сг, дополнительно легированные такими элементами, как никель, молибден, ванадий, вольфрам, ниобий, что обеспечивает получение более высоких механических свойств при повышенных температурах. Стали подобного типа имеют преимущества перед сталями X13 без дополнительного легирования и в отношении коррозионной стойкости. Стали этого типа отличаются достаточно высокими значениями ударной вязкости. Ниже кратко рассматривается влияние отдельных легирующих элементов на свойства стали 1X13 [69—71].  [c.74]

Фелмлей, Хэртбоуэр и Пеллини исследовали влияние отпуска при 650° С после нормализации с 900° С на Деформационное старение кипящей стали и сталей, успокоенных алюминием, кремнием и алюминием, кремнием, ванадием и титаном. Они установили, что если охлаждение после высокого отпуска происходило в печи, то при деформационном старении заметно изменялись свойства, определяемые при растяжении, и температура хладноломкости только у первых сталей. Но если с 650° С проводили закалку, то все стали обнаруживали значительный эффект деформационного старения [176].  [c.106]


Смотреть страницы где упоминается термин Ванадий 148 — Влияние температуры свойства ванадия : [c.86]    [c.174]    [c.129]    [c.774]    [c.275]    [c.242]    [c.149]    [c.228]    [c.332]    [c.703]    [c.14]    [c.288]   
Цветное литье Справочник (1989) -- [ c.148 ]



ПОИСК



141 — Влияние на свойства

Ванадий 148 — Влияние температуры

Ванадий 273, 275, ЗСО

Ванадит

Влияние Влияние температуры

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте