Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Горение связующего

Применение повышенного давления при высоких температурах невыгодно и по другой причине. Реакции газификации, протекающие при горении, связаны с увеличением объема продуктов горения. Однако повышенное давление препятствует протеканию таких реакций. Таким образом, при повышенном давлении воздуха, с одной стороны, увеличивается скорость горения, с другой — происходит торможение реакции газификации, что замедляет горение. Несмотря иа это, делаются попытки применить газовую турбину в комбинации с топкой с жидким шлакоудалением, в которой сжигались бы угли при повышенном давлении воздуха. Преимуществами такого решения являются улавливание большей части золы в виде шлака непосредственно в топке и получение чистых продуктов горения с высокой температурой, необходимых для приведения в движение турбины.  [c.87]


Влияние температуры горения связано и с переходом серы в газообразное состояние. При плавлении золы в топках с жидким шлакоудалением вся сера переходит в газообразное состояние. Образование газообразной серы в топочных газах является одной из главных причин появления сероводорода. При сжигании АШ, ГСШ и других углей переход серы в летучее состояние в топках с жидким шлакоудалением происходит на ранних стадиях горения.  [c.60]

Н. М. Глаголев [19] предлагает зависимость константы скорости сгорания от угла поворота коленчатого вала к=р1 ) заменить зависимостью к от доли сгоревшего топлива х и температуры рабочего тела Т. Он обосновывает это следующими соображениями. Гетерогенная вначале реакция горения к концу становится гомогенной. Постепенное увеличение роли гомогенных реакций по ходу процесса горения связано главным образом с выделением теплоты, величина которой определяется долей сгоревшего топлива X. Поэтому целесообразно исследовать зависимости типа = Рз х). И. М. Глаголев выдвигает дополнительные соображения в пользу этого способа. Отпадает необходимость заранее задаваться продолжительностью всей реакции и температурой конца сгорания, которая является величиной, определяемой из расчета.  [c.23]

При обогащении воздуха горения кислородом, т. е. при подаче кислорода в факел, изменяются условия горения топлива, состав, количество и теплосодержание продуктов горения Объем продуктов горения уменьшается по сравнению с обычным сжиганием. Сокращение объема продуктов горения связано прежде всего с уменьшением содержания азота в результате обогащения воздуха кислородом. С уменьшением объема продуктов горения повышается температура факела. Из-за этих же обстоятельств усиливаются  [c.249]

Содержание горючих Гх в любой из слагающих потерь теплоты от механической неполноты горения связано с его зольностью Ах следующим образом Г1=100— —Лл-100%. Тогда величина каждой из слагающих, кДж/кг или ккал/кг, будет  [c.67]

Третье условие воспламенения и горения связано с возможностью накопления в реагирующей смеси тепла и активных промежуточных продуктов.  [c.48]

Скорость горения смесевого топлива регулируется не только химическим составом топлива, но и степенью дисперсности окислителя, т. е. — средней величиной зерен. Это любопытное обстоятельство показывает, что скорость горения связана ие только с химическим составом топлива, но и с физической картиной процесса. Нечто похожее мы имеем и в показателях прочности, которые также зависят не только от состава материала, по II от его структуры, полученной в результате предварительной обработки.  [c.235]


Как было показано выше, изменение нагрузки приводит к изменению физических характеристик горения. Связь, установленная  [c.127]

У авиационных двигателей степень сжатия выше, поэтому октановое число авиационных бензинов должно быть не меньше 98,6. Кроме того, авиационные бензины должны более легко испаряться (иметь низкую температуру кипения ) в связи с низкими температурами на больших высотах. В дизелях жидкое топливо испаряется в процессе горения при высокой температуре, поэтому испаряемость для них роли не играет. Однако при рабочей температуре (температуре окружающей среды) топливо должно быть достаточно жидкотекучим, т. е. иметь достаточно низкую вязкость. От этого зависит безотказная подача топлива к насосу и качество распыления его форсункой. Поэтому для дизельного топлива важна прежде всего вязкость, а также содержание серы (это связано с экологией). В маркировке дизельного  [c.181]

Источники сварочного тока. Для сварки под флюсом применяют источники переменного и постоянного тока с пологопадающей характеристикой. Используют преимущественно источники переменного тока в связи с большей экономичностью и хорошей устойчивостью горения дуги под флюсом. Для этой цели серийно выпускают трансформаторы ТСД-500-1, ТСД-1000-4 и ТСД-2000 в однокорпусном исполнении, со встроенными дросселями, с дистанционным управлением.  [c.73]

Первую группу явлений, которую рассматривает теория сварочных процессов, составляют физические, механические и химические явления, происходящие при подготовке свариваемого материала к образованию прочных связей между отдельными частями свариваемой детали. В большинстве случаев это явления, связанные с преобразованием различных видов энергии в тепловую. Металл, будучи нагрет и расплавлен, способен образовывать сварное соединение. Чаще всего при сварке для нагрева металла используют электрическую энергию. Но имеется много способов сварки, в которых используют энергию, выделяющуюся при горении газов, лучевую энергию, механическую, а также их сочетание. Описание физико-химических процессов, лежащих в основе этих способов, дается в разд. I Источники энергии при сварке .  [c.5]

Но если реагирующие вещества образуют изолированную систему, а фактически часто так и бывает в двигателях внутреннего сгорания, то их внутренняя энергия остается неизменной, и тепло не выделяется и не поглощается. Просто в результате реакции часть энергии связи молекул топлива переходит в энергию хаотического движения молекул продуктов горения, что приводит к повыщению их температуры и давления. Это и позволяет машине совершать работу.  [c.108]

Если энергия затрачивается на излучение, то туманность постепенно сжимается и становится еще более горячей, т. е. ее средняя температура возрастает тем быстрее, чем быстрее она излучает энергию и при этом сжимается. Уравнение (117) показывает, как связана уменьшающаяся величина радиуса звезды за с ее возрастающей средней температурой Тср. В конце концов эта температура становится настолько высокой, что могут начаться ядерные реакции ). Когда главным источником энергии становятся ядерные реакции, гравитационное сжатие звезды замедляется или совсем прекращается, потому что увеличение давления излучения противодействует дальнейшему сжатию звездного вещества. Таково нынешнее состояние нашего Солнца. Приблизительно через 7-10 лет, когда в результате термоядерного горения большая часть водорода Солнца превратится в гелий, опять начнется сжатие и возобновится процесс постепенного повышения средней температуры внутри Солнца ).  [c.305]

Пользуясь известной связью между приведенной скоростью и числом М, можно получить также аналогичные зависимости числа М для волн детонации и горения от тепловой характеристики газовой смеси.  [c.224]

Интересный результат получится, если связать абсолютные скорости газа в начале и в конце зоны детонационного горения  [c.231]


Большая часть наших знаний о плазме получена из исследований газового разряда. В настоящее время интерес к изучению плазмы резко возрос в связи с проблемой энергетического использования термоядерных реакций синтеза легких ядер, а также в связи с использованием плазмы в качестве пара (рабочего вещества) в МГД-генераторах. При большой температуре газа, когда он находится в. состоянии плазмы и частицы движутся с большими скоростями, становятся возможными преодоление кулоновского потенциального барьера при столкновениях атомных ядер и их синтез. Практически особо важное значение представляет возбуждение термоядерных реакций в дейтерии, так как в этом случае такие реакции должны идти при относительно меньших температурах (Г 10 К). Горение ядер дейтерия в результате их синтеза в а-частицы приводит к выделению большой энергии.  [c.215]

Диссоциация — реакция противоположного направления реакции горения и поэтому она требует затраты энергии извне и идет с поглощением теплоты, т. е. это реакция эндотермическая. Энергия эта расходуется на разрыв связей и на сообщение кинетической энергии вновь освобождающимся частицам. Диссоциация конечных продуктов сгорания указывает на неполноту реакции, на неполноту выделения теплоты и, следовательно, приводит к снижению к. п. д. камеры сгорания.  [c.214]

Химические реакции осуществляются в результате взаимных столкновений молекул. Скорость реакции на основании закона действуюш,их масс зависит от концентрации реагирующих молекул, а следовательно, и числа столкновений, причем чем больше концентрация, тем больше будет столкновений. Однако в реакциях, протекающих с конечной скоростью, не все столкновения молекул приводят к химическому взаимодействию. Эффективными будут только те столкновения между молекулами, которые в момент столкновения обладают некоторым избытком внутренней энергии и при встрече их может выделиться энергия, необходимая для разрушения химических связей. Этот избыток энергии, необходимый для проведения данной реакции, называется энергией активации. Причина того, что топливо (бензин, керосин и т. п.) не загорается само собой, заключается в значительной энергии активации соответствующих окислительных реакций. Повышение температуры приводит к тому, что все чаще и чаще молекулы окислителя и горючего в момент столкновения имеют необходимый избыток энергии, и в конце концов скорость реакции достигает большой величины — начинается горение. По теории активации к реакции могут привести только столкновения между активными молекулами, энергия которых будет больше энергии активации.  [c.226]

Сопла. Значительный интерес представляют процессы теплообмена в камерах горения и соплах ракетных двигателей. Тепловые потоки от продуктов горения к стенкам достигают значений порядка 1,2-10 2,4-10" Вт/м Теплота переносится к стенкам конвекцией и радиацией. Доля радиационного переноса достигает 20—30%, так как температура газов очень высока и часто превосходит 3000 К. В связи с резким изменением параметров газа по длине двигателя (например, давление меняется по длине камеры горения и сопла в десятки раз, при этом температура падает на несколько сот кельвинов) меняется химический состав продуктов горения, их физические константы, степень диссоциации. В этих условиях теоретическое определение теплоотдачи в ракетном двигателе затруднено, и поэтому в настоящее время решающее значение имеют экспериментальные исследования. При огромном многообразии размеров и формы двигателей, а также сортов топлива и окислителя невозможно, даже экспериментально, составить одну обобщенную формулу для определения коэффициента теплоотдачи.  [c.247]

Явления воспламенения и горения неразрывно связаны с реакциями окисления или разложения реагентов, они представляют собой сложные физико-химические процессы взаимодействия горючего и окислителя и сопровождаются выделением теплоты и света.  [c.217]

Из уравнения (6.10.21) следует, что с ростом при прочих равных условиях величина 2> и, следовательно, полное время выхода на стационарный режим горения растут, в то время как при низкотемпературном режиме зажигания эти величины с ростом Тщ уменьшаются. В связи с этим следует ожидать, что при некоторой температуре поверхности Тц, величина г а имеет минимум.  [c.327]

Определим невозмущенное стационарное решение поставленной выше задачи, которое нам понадобится при да,1ь-нейшем анализе. Так как система координат связана с ге-возмущенным фронтом пламени, то положению фронта соответствует х = 0. За фронтом пламени температура раина адиабатной температуре горения, а концентрация равна нулю  [c.333]

Спектральная структура потока результирующего излучения рез (Я) характеризуется высокой степенью селективности во всех зонах по высоте топки как в камере горения, так и в камере охлаждения. Наблюдаются резко выраженные максимумы, расположенные в областях полос поглощения трехатомных газов СО2 и НзО. Заметное снижение значений дрез (J ) при переходе от камеры охлаждения к камере горения связано с тем, что в камере горения потоки собственного излучения экранов достигают наиболее высоких значений вследствие высокой температуры пленки жидкого шлака.  [c.224]

Неисправности электрических узлов встречаются наиболее часто. Игнитроны не поджигаются из-за несрабатывания гидрокнопки, выхода из строя выпрямителей или предохранителей или, наконец, самих игнитронов. Непрерывное их горение связано с порчей поджигателей. Типовые неисправности РВЭ-7, прерывателей ПИШ и ПИТ и других устройств и сроки их проверки обычно указываются в паспорте. Наиболее надежны бесконтактные системы электропитания.  [c.231]

Коэффициент избытка воздуха ав в формуле (17.7) учитывает тот факт, что при ав>1 избыточная часть содержащегося в нем кислорода не окисляет горючее, а значит, и не дает теплоты. Значения W ч Wu связаны соотношением ш = = ш (273 +0/273. Топочные устройства для слоевого сжигания классифицируют в зависимости от способа подачи, перемещения и шуровки слоя топлива на колосниковой решетке. В немеханизированных топках, в которых все три операции осуществляют вручную, можно сжигать не более 300— 400 кг/ч угля. Наибольшее распространение в промышленности получили полностью механизированные слоевые топки с пневмомеханическими забрасывателями и цепной решеткой обратного хода (рис. 17.6). Их особенность — горение топлина па непрерывно  [c.139]


Сварочную проволоку используют также при автоматической дуговой сварке под флюсом, сварке плавящимся электродом в среде защитных газов и как присадочный материал при дуговой сварке неплавящимся электродом и газовой сварке. Покрытия электродоп предназначены для обеспечения стабильного горения дуги, защиты расплавленного металла от воздействия воздуха и получения металла шва заданного состава и свойств. В состав покрытия электродов входят стабилизирующие, газообразующне, шлакообразующие, раскисляющие, легирующие и связующие составляюище.  [c.191]

Устойчивость дуг переменного тока ниже, чем дуг постоянного тока. Это связано с тем, что при питании дуги с частотой 50 Гц дуга 100 раз в секунду гаснет и вновь возбуждается. Для повышения ста-,5ильности горения дуги в покрытия и флюсы вводят вещества ( соединения калия, кальция, цезия и др.), способствующие хоро- jTjen проводимости дугового промежутка. Применяют также спе-ц иальные устройства, называемые осцилляторами и генераторами Шпульсов, которые способствуют возбуждению дуги синхронно с частотой питающей сети.  [c.55]

В связи с разными условиями существования дуги на электродах (различие в работах выхода ф1 и ф2, разные температуры пл и 7 киг,. разные формы электродов и разный теплоотвод от них) возможна асимметрия токов и напряжений в разные полуперио-ды горения дуги — так называемый вентильный эффект (рис. 2.46).  [c.91]

Подчеркнем, однако, что эти выводы не имеют универсального характера, и можно представить себе случаи самопроизвольного возникновения пересжатой детонационной волны. Так, пересжатая волна возникает при переходе детонации из широкой трубки в узкую это явление связано с тем, что когда детонационная волна доходит до места сужения, происходит ее частичное отражение, в результате чего давление продуктов горения, втекающих из широкой в узкую часть трубы, резко возрастает—ср. задачу 4 (Б. В. Айвазов, Я. Б. Зельдович, 1947) ).  [c.683]

Прежде всего возникаег вопрос об эволюционности конденсационных скачков. В этом отношении их свойства полностью аналогичны свойствам разрывов, представляющих зону горения. Мы видели ( 131), что отличие устойчивости последних от устойчивости обычных ударных волн связано с наличием одного дополнительного условия (заданное значение потока / ), которое должно выполняться на их поверхности. В данном случае тоже имеется одно дополнительное условие — термодинамическое состояние газа / перед скачком должно быть как раз тем, которое соответствует началу быстрой конденсации пара (это условие представляет собой определенное соотношение между давлением и температурой газа /). Поэтому сразу можно заключить, что весь участок адиабаты под точкой О, на котором vi < Сь V2 > С2, исключается как не соответствующий устойчивым скачкам.  [c.690]

В современном представлении детонационная волна, распространяющаяся в горючей газовой среде, является двухслойной. Первый слой представляет собой адиабатическую ударную волну, при прохождении через которую газ сильно разогревается. В химически активном газе разогрев этот, если он достаточно интенсивен, может вызвать воспламенение. В связи с тем что толщцна ударной волны ничтожно мала (порядка длины свободного пробега молекулы), в пределах ее процесс горения, по-видимому, развиться не в состоянии. Поэтому область, в которой протекает горение, образует второй, более протяженный, но практически также весьма тонкий слой, примыкающий непосредственно к ударной волне (рис. 5.18).  [c.218]

Однако с удалением от центра взрыва волна детонации ослабляется и скорость раонространения ее Xi падает. В связи с этим происходит снижение температуры торможения в начале области горения (г ) и рост приведенной скорости газа (Яг). При этом увеличиваются относительный разогрев газа (ЛТ /Т ) и скорость движения (68) продуктов сгорания (Яз). Очевидно, что, когда детонационная волна ослабится настолько, что Хз подни-  [c.222]

На рис. 5.4 показана схема перехода горения газовой смеси при поджигании ее у закрытого конца трубы [30]. Физической причиной возникновения детонации является взрыв адиабатически сжатой газовой смеси. На начальном этапе горения (см. рис. 5.4) образуется ламинарное пламя П. В результате расщирения продуктов сгорания перед фронтом пламени возникает волна сжатия 5, за которой происходит ускорение движения фронта пламени и непрореагировавщей газовой смеси. В дальнейшем в связи с турбулизацией потока газа перед пламенем оно превращается в турбулентную область сгорания. В результате увеличивается скорость распространения пламени относительно несгоревщей смеси, что приводит к увеличению давления и температуры в волне сжатия. Прогрессивное увеличение амплитуды волны сжатия происходит до тех пор, пока не создаются условия, необходимые для взрывного воспламенения адиабатически сжатой смеси и перехода процесса в детонационный.  [c.98]

Следует отмеетить, что два уравнения этой системы — (6.1.5) и (6.1.6) — являются интегродифференциальными. Все остальные уравнения, за исключением конечных сост-нощений, представляют собой нелинейные уравнения в частных производных. В связи с этим решение системы одномерных уравнений даже с использованием современных ЭВМ представляет собой трудную задачу. Ввиду сложности основной системы уравнений при рассмотрении различных классов задач теории горения вводят те или иные упрощающие допущения.  [c.222]

Замечание 6.2.2. Полученные выше уравнения могут применяться не только для описания процесса тепло- и мге-сообмена в теплозащитных покрытиях, но и для моделирования на ЭВМ горения смесевых твердых топлив (СТТ) [З П. Типичные составы СТТ содержат по массе до 70—80% твердого окислителя (обычно это перхлорат аммония (ПХ ) NH4 IO4) и 10—17% горючего (обычно битум, бутадиенов яй каучук, фенолоформальдегидная смола). Для повышения теплоты сгорания в СТТ, как правило, вводят метал, 1Ы (алюминий, бор, магний, бериллий, цинк и др.) в порошкообразном состоянии, а также пластификаторы (для улучшения механических свойств), катализаторы и различные технологические добавки. Роль связующего в такой многокомпонентной гетерогенной системе играет полимерное горючее, которое поэтому называют также связкой.  [c.242]

Следует отметить, что не все физико-механические явлв ния, на основе которых записана система уравнений, полученная в 6.2—6.4, имеют место при воспламенении и горении реагирующих веществ. В связи с этим представляе интерес данная А. Г. Мержановым классификация конденсированных реагирующих веществ (рис. 6.5.1). Классифи кация проведена в соответствии с теми или иными процессами, протекающими в конденсированном веществе. Соглас-  [c.267]

В связи с этим уместно ввести понятие ведущей стасии химического процесса. Ведущей химической реакцией (стадией) следует называть реакцию (стадию), тепловыделение от которой обеспечивает воспламенение и дальнейшее горение реагента.  [c.268]

При данном режиме нестационарность процесса ргспро-странения фронта горения обусловлена дополнительным потоком теплоты от нагретой поверхности. В связи с этим распространение фронта горения можно считать установившимся, если поток теплоты от нагретой поверхности к продуктам реакции мал по сравнению со скоростью тепловыделения за счет химической реакции (для определенности 17 = = 0,1 дт .  [c.326]


Смотреть страницы где упоминается термин Горение связующего : [c.67]    [c.235]    [c.127]    [c.71]    [c.324]    [c.667]    [c.669]    [c.671]    [c.672]    [c.4]    [c.417]    [c.603]    [c.342]   
Ракетные двигатели на химическом топливе (1990) -- [ c.67 ]



ПОИСК



Горение

Связь характеристик горения с параметрами рабочего процесса Особенности лучистого теплообмена в цилиндре двигателя



© 2025 Mash-xxl.info Реклама на сайте