Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двигатели внутреннего сгорания циклы

Образцовый цикл паросиловых установок (цикл Ренкина) с изоэнтропическим расширением можно отнести к процессам второй группы, т. е. к процессам внутренне обратимым, но внешне необратимым. Теплообмен в котельной установке между продуктами сгорания и кипящей водой является явным нарушением внешнего термического равновесия, так как он происходит обычно при огромных разностях температур между источником тепла я рабочим телом. Этот процесс необратимого теплообмена сопровождается значительным ростом энтропии системы и приводит к потере возможной работы по сравнению с обратимым протеканием процесса. Несмотря на это нарушение термического равновесия между рабочим телом и источником тепла, в большинстве случаев можно считать, что процесс внутренне обратим, так как внутри рабочего тела отклонения от равновесия сравнительно невелики. К процессам второй группы при термодинамическом анализе следует отнести также образцовые циклы двигателей внутреннего сгорания, циклы газовых турбин и обратные газовые циклы в холодильной технике.  [c.18]


Циклограммы бывают прямоугольные, линейные и круговые. В прямоугольной циклограмме (рис. 5.4, а) время (или угол поворота главного вала) каждой части цикла (рабочий ход, выстой и т. д.) изображается длиной прямоугольника. В линейной циклограмме (рис. 5.4, в), являющейся упрощенной диаграммой перемещений отдельных РО, рабочий ход изображается восходящей наклонной прямой, холостой (обратный) ход — нисходящей наклонной прямой н выстой — соответствующим горизонтальным отрезком вверху или внизу. Круговая циклограмма (рис. 5.4, б) представляет собой прямоугольную Ц1, свернутую в кольцо, где каждой части цикла соответствует центральный угол ср поворота главного (или распределительного) вала. Круговые циклограммы строятся только для МЛ, у которых кинематический цикл равен одному обороту главною (или распределительного) вала, нанример для двигателей внутреннего сгорания.  [c.167]

Жидкие металлы используют в технике в качестве нагревающей среды при термической обработке металлов (РЬ), для охлаждения клапанов двигателей внутреннего сгорания (Na — рис. 102), в качестве теплоносителя в котлах бинарного цикла (Hg—Н2О) и в ядерных реакторах, особенно в реакторах на быстрых нейтронах (Na, К, Na + К, Li, Ga Hg, Sn, Bi, Pb, Pb -f- Bi и др.).  [c.142]

В первой части учебного пособия кратко изложены исторические данные, показана роль, которую играли русские и советские ученые в развитии основных положений теоретической теплотехники. Подробно рассмотрены основные законы термодинамики, термодинамические процессы, дифференциальные уравнения термодинамики и истечение газов и паров. В прикладной части рассмотрены циклы двигателей внутреннего сгорания, газотурбинных и паротурбинных установок, а также циклы атомных электростанций,  [c.3]

Термодинамический анализ циклов двигателей внутреннего сгорания различных типов позволяет отметить, что степень совершенства этих двигателей возрастает с увеличением степени сжатия рабочего тела.  [c.10]

При исследовании идеальных термодинамических циклов поршневых двигателей внутреннего сгорания обычно определяют количество подведенной и отведенной теплоты, основные параметры состояния рабочего тела в типичных точках цикла, причем температуры в промежуточных точках вычисляют как функции начальной температуры газа вычисляют термический к. п. д, цикла по основным характеристикам и производят анализ термического к. п. д.  [c.260]

Анализ такого цикла с точки зрения теории тепловых процессов невозможен, а поэтому термодинамика исследует не реальные процессы двигателей внутреннего сгорания, а идеальные, обратимые циклы. В качестве рабочего тела принимают идеальный газ с постоянной теплоемкостью. Цилиндр заполнен постоянным количеством рабочего тела. Разность температур между источником теплоты и рабочим телом бесконечно малая. Подвод теплоты к рабочему телу осуществляется от внешних источников теплоты, а не за счет сжигания топлива. То же необходимо сказать и об отводе теплоты.  [c.262]


Таким образом, изучение идеальных термодинамических циклов позволяет производить при принятых допущениях анализ и сравнение работы различных двигателей и выявлять факторы, влияющие на их экономичность. Диаграмма, построенная при указанных условиях, является не индикаторной диаграммой двигателя внутреннего сгорания, а ру-диаграммой цикла с подводом теплоты при постоянном объеме.  [c.262]

По циклу с изохорным подводом теплоты работают двигатели внутреннего сгорания на легких и газообразных топливах.  [c.264]

При методе конвертирования базовую машину или основные ее элементы используют для создания агрегатов различного назначения, иногда близких, а иногда различных по рабочему процессу. Примером конвертирования может служить перевод поршневых двигателей внутреннего сгорания с одного вида топлива на другой, с одного вида теплового процесса на другой (с цикла искрового зажигания на цикл с воспламенением от сжатия).  [c.47]

Движущие силы обеспечивают движение механизма, их работа за промежуток времени, равный времени рабочего цикла двигателя положительна. Направления этих сил должны совпадать или составлять острые углы с направлениями скоростей точек их приложения. Вместе с тем на отдельных этапах рабочего цикла это условие может быть нарушено и движущие силы могут совершать отрицательную работу. Например, в двигателе внутреннего сгорания движущей силой является сила давления газов, действующая на поршень. При сжатии рабочей смеси работа этой силы становится отрицательной.  [c.56]

Рабочим циклом называется совокупность характерных процессов, происходящих в двигателе в определенной последовательности во время его работы. Для четырехтактного двигателя внутреннего сгорания рабочий цикл состоит из четырех тактов (впуск горючей смеси, сжатие, рабочий ход, выпуск).  [c.56]

ТЕОРЕТИЧЕСКИЕ ЦИКЛЫ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ  [c.128]

Рабочее тело поршневого двигателя внутреннего сгорания со смешанным подводом теплоты обладает свойствами воздуха. Известны начальные параметры pi = = 0,1 МПа, = 30° С и следующие характеристики цикла е = 7, Я = 2,0 и р = 1,2.  [c.153]

В 1862 г. французский изобретатель Бо де Роша предложил использовать в двигателе внутреннего сгорания четырехтактный цикл 1) всасывание 2) сжатие 3) горение и расширение 4) выхлоп. Эта идея была использована немецким изобретателем  [c.109]

Карбюраторный двигатель внутреннего сгорания работает по циклу, состоящему из четырех последовательно происходящих процессов адиабатного сжатия из состояния А в состояние В, изохорного перехода из состояния В в состояние С в результате нагревания воздуха при сжигании горючей смеси, адиабатного расширения из состояния С в состояние D и изохорного перехода из состояния D в исходное состояние А (см. рис. 117). Вычислите КПД двигателя для случая, если бы воздух был идеальным одноатомным газом при значениях температуры в состояниях А, В, С и D соответственно Т -= ==300 К, Тв -524 К, Тс = 786 К и Гд = 450 К.  [c.123]

На рис. 169 изображена теоретическая диаграмма расчетного цикла двигателя внутреннего сгорания. По оси абсцисс отложен объем рабочей смеси, заключенной в цилиндре (этот объем пропорционален перемещению поршня), а по оси ординат — давление в цилиндре.  [c.153]

Найти к. п. д. двигателя внутреннего сгорания, работающего по циклу Отто, в котором сжатие и расширение горючей смеси производятся адиабатно, а ее горение происходит при постоянном объеме (рис. 16). Параметром цикла является степень сжатия e=Ki/F2.  [c.87]

В первой части учебника излагаются основные законы термодинамики, термодинамические процессы, реальные газы и пары, рассматриваются циклы двигателей внутреннего сгорания, газотурбинных установок и реактивных двигателей даются основные положения химической термодинамики, необходимые для построения теории горения.  [c.3]

ЦИКЛЫ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ  [c.151]

В основе работы двигателей внутреннего сгорания лежат идеальные круговые процессы преобразования теплоты в механическую работу, т. е. идеальные циклы. Изучение их необходимо для оценки совершенства действительных тепловых процессов, происходящих в двигателях, а также факторов, влияющих на экономичность двигателя и величину развиваемой им работы.  [c.152]


В двигателях внутреннего сгорания могут быть использованы еле дующие циклы  [c.153]

Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном объеме. 16.2. Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном давлении. 16.3. Цикл двигателя внутреннего сгорания со смешанным подводом теплоты. 16.4. Сравнение циклов двигателей внутреннего сгорания. 16.5. Рабочий процесс компрессора.  [c.512]

В поршневых двигателях внутреннего сгорания рабочим телом являются смесь воздуха и горючих газов или паров жидкого топлива (на начальном участке цикла) и газообразные продукты сгорания (на остальных участках цепи).  [c.534]

ЦИКЛ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С ПОДВОДОМ ТЕПЛОТЫ ПРИ ПОСТОЯННОМ ОБЪЕМЕ  [c.534]

В двигателе внутреннего сгорания, цикл работы которого описан в 15.1, период равен времени двух оборотов. Если двигатель многоцилиндровый, то период может быть равен времени некоторой доли оборота. Установившийся режим работы машины характеризуется тем, что все механические величины, как-то скорости и ускорения точек, силы и пр., выраженные в функции времени, изменяются периодически. Если указанные механические величины переменные, изменяются не периодически, то режим работы машины неустановившийся. Сюда следует отнести разбег машины, который предшествует стационарному режиму, выбег или торможение, периоды регулирования скорости при изменении режима работы и, наконец, реверсирование. Р ерсврование, как. постоянный режим работы, встречается во многих машинах. При таком режиме работают, например, продольно-строгальные станки, в которых механизм рабочего движения, сообщающий столу с закрепленным на н й изделием возвратно-поступательное движение, периодически реверсируется, т. е. сначала останавливается, а затем разгоняется до некоторой постоянной скорости.  [c.458]

Цикл может соответствовать одному или нескольким оборотам начального звена. Так, например, вал насоса с кривошип-но-ползуиным механизмом в течение цикла делает один оборот. У четырехтактного двигателя внутреннего сгорания в течение цикла коленчатый вал делает два оборота. В некоторых машинах один цикл соответствует и большему числу оборотов ведущего вала,  [c.306]

Термический КПД цикла двигателя внутреннего сгорания увеличивается с ростом степени сжатия е. Нетрудно получить аналитическую зависимость г)/ от в, например, для цикла со сгоранием при у = onst. При постоянной теплоемкости  [c.58]

Основным механизмом двигателя внутреннего сгорания является кривошип-но-нолзуниый механизм 1-2-3, который преобразует возвратно-поступательное движение ползуна (поршня) 3 во вращательное движение кривошипа I. Передача движения от ползуна к кривошипу осуществляется через шатун 2 (рис. 6.5, а). Цикл движения поршней включает такты раси1иреиия, выпуска, впуска и сжатия. Взорвавшаяся в камере сгорания рабочая смесь перемещает поршень из  [c.210]

Более сложной является характеристика асинхронного двигателя трехс зазного тока (рис. 42, в), которая имеет зосхездящую и нисходящую части. Областью устойчивой работы двигателя при такой характеристике является ее нисходящая часть. Если момент сопротивления становится больше максимального момента движущих сил, называемого опрокидываюш,им моментом, то двигатель останавливается (опрокидывается). Аналогичную характеристику имеет двигатель внутреннего сгорания (имеется в виду зависимость среднего за цикл момента на коленчатом валу от угловой скорости этого вала).  [c.57]

Во всех приведенных выше теоретических циклах поршневых двигателей внутреннего сгорания уравнения для определения количества подведенной и отведенной теплоты, а также для термического к. п. д. даны для случая с -- onst.  [c.130]

Для идеального цикла поршневого двигателя внутреннего сгорания с подводом теплоты при v — onsi определить параметры в характерных точках, полученную работу, термический к. п. д., количество подведенной и отведенной теплоты, если дано Pi = 0,1 МПа = 20 С е = 3,6 X = 3,33 k = 1,4.  [c.142]

Для цикла поршневого двигателя внутреннего сгорания с подводом теплоты при v = onst определить параметры характерных для цикла точек, количества подведенной и отведенной теплоты, термический к. п. д. цикла и его полезную работу, если дано  [c.144]

В цикле поршневого двигателя внутреннего сгорания с подводом теплоты при v = onst степень сжатия е = 5, степень увеличения давления X = 1,5.  [c.144]

Построить график зависимости термического к. п. д. от степени сжатия для цикла поршневого двигателя внутреннего сгорания с подводом теплоты при и = = onst для значений в от 2 до 10 при Л = 1,37.  [c.144]

Для цикла поршневого двигателя внутреннего сгорания с подводом теплоты при р = onst определить параметры в характерных точках, полезную работу, количество подведенной и отведенной теплоты и термический к. п. д., если дано pi 100 кПа, = 70 е — 12 k 1,4 р — 1,67. Рабочее тело — воздух. Теплоемкость принять постоянной.  [c.149]

Найти давление и объем в характерных точках цикла поршневого двигателя внутреннего сгорания с подводом теплоты при р = onst, а также термический к. п. д. и полезную работу, если дано р = 100 кПа, е = 14 р = 1,5 k = 1,4.  [c.149]

Найти термический к. п. д. этого цикла и сравнить его с циклом поршневого двигателя внутреннего сгорания с подводом теплоты при р = onst при одинаковых степенях сжатия е и при одинаковых степенях расширения р. Представить цикл в диаграмме Ts.  [c.156]

Найти к. п. д. двигателя внутреннего сгорания, работающего по циклу Дизеля, диаграмма которого изображена на рис. 17 I—2—адиабатное сжатие атмосферного воздуха, 2—3—изобарное расширение (впрыскивание горючей смеси и ее сгорание), 3—4—адиабатное расширение, 4—1 — изохорное охлаждение. Параметрами цикла являются степень сжатия s=iV-ilVi и степень предварительного расширения p=Vj/V2.  [c.87]


Работа в двигателях внутреннего сгорания производится не за счет теплоты извне, а за счет внутренней энергии рабочего вещества (горючей смеси). В цикле Отта горючая смесь, вошедшая в цилиндр, адиабатно сжимается (/—2) воспламененная искрой, изохорно сгорает (2—ЗУ, адиабатно расширяется (3—4) и выбрасывается в атмосферу 4—I).  [c.312]

Рассмотренный выше цикл называется прямым. В таких ц 1клах теплота превращается в работу в них работа расширения больше работы сжатия. По прямым циклам работают тепловые двигатели (двигатели внутреннего сгорания, газотурбинные установки, паровые машины, ракетные двигатели).  [c.65]

При таких предпосылках можно считать, что двигатели внутреннего сгорания работают по обратимым термодинамическим циклам Термодинамическое исследование дает возможность определн ь принципы работы двигателей, параметры газа в характерных точь ах цикла, термический к. п. д. и работу цикла. Термодинамические иссле дования циклов, как правило, сопровождаются графическим изобра жением их на р — и и Т — s-диаграммах.  [c.153]


Смотреть страницы где упоминается термин Двигатели внутреннего сгорания циклы : [c.320]    [c.46]    [c.203]    [c.259]    [c.271]   
Теплотехнический справочник (0) -- [ c.695 ]

Теплотехнический справочник Том 1 (1957) -- [ c.695 ]



ПОИСК



Газовые циклы 11-1. Циклы поршневых двигателей внутреннего сгорания

Газовый цикл Раздел седьм ой ТОПЛИВО ДЛЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ Получение жидких топлив и их классификация

Глава двенадцатая. Компрессоры и циклы двигателей внутреннего сгорания

Глава одиннадцатая ЦИКЛЫ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ 11- 1. Принцип действия поршневых двигателей внутреннего сгорания

Глава одиннадцатая Циклы поршневых двигателей внутреннего сгорания

Графическое изображение рабочих циклов, протекающих в двигателях внутреннего сгорания, и их термодинамический анализ

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ Устройство и действительные циклы двигателей внутреннего сгорания

Двигатели Циклы

Двигатели внутреннего сгорания четырёхтактные- Действительный цикл

Двигатель внутреннего сгорани

Двигатель внутреннего сгорания

Действительное протекание рабочего цикла поршневого двигателя внутреннего сгорания

Действительные циклы двигателей внутреннего сгорания

Действительные циклы поршневых двигателей внутреннего сгорания

Действительный цикл двигателя внутреннего сгорания с быстрым сгоранием топлива (бензинового двигателя)

Действительный цикл двигателя внутреннего сгорания с самовоспламенением топлива

Идеальные циклы двигателей внутреннего сгорания

Идеальные циклы поршневых двигателей внутреннего сгорания Процессы поршневых компрессоров. Циклы холодильных установок Идеальные циклы поршневых двигателей внутреннего сгорания

Идеальные циклы поршневых двигателей внутреннего сгорания и компрессоров

Изображение идеальных циклов двигателей внутреннего сгорания в координатах

Исследование идеальных циклов двигателей внутреннего сгорания

К п внутренний цикла

Классификация циклов двигателей внутреннего сгорания по степени их отклонения от действительных процессов

Некоторые разновидности рабочих циклов двигателей внутреннего сгорания

О коэффициенте полезного действия идеального цикла быстрого сгорания при конечной скорости выделения тепОб индикаторном к. п. д. двигателя внутреннего сгорания

Обобщенный термодинамический цикл двигателей внутреннего сгорания и газотурбинных установок

Понятия о втором законе термодийамики и идеальных термодинамических циклах компрессоров и двигателей внутреннего сгорания

Принципы работы поршневых двигателей внутреннего сгорания и их рабочие циклы

Сравнение циклов двигателей внутреннего сгорания

Сравнение циклов поршневых двигателей внутреннего сгорания

ТЕПЛОСИЛОВЫЕ ГАЗОВЫЕ ЦИКЛЫ Циклы поршневых двигателей внутреннего сгорания

Теоретические циклы двигателей внутреннего сгорания

Теоретические циклы и действительные процессы двигателей внутреннего сгорания

Теоретические циклы поршневых двигателей внутреннего сгорания

Теория двигателей Теоретические замкнутые циклы двигателей внутреннего сгорания

Термодинамические основы рабочих циклов двигателей внутреннего сгорания (Д. II. Вырубов)

Термодинамические циклы двигателей внутреннего сгорания

Термодинамические циклы поршневых двигателей внутреннего сгорания

Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом теплоты при постоянном объПотери в реальных поршневых двигателях и пути повышения их

Характеристики термодинамических циклов двигателей внутреннего сгорания

Ц икл двигателя внутреннего

Цикл Карно двигателя внутреннего сгорания

Цикл двигателя внутреннего сгорани

Цикл двигателя внутреннего сгорани

Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном давлении

Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном объеме

Цикл двигателя внутреннего сгорания со смешанным подводом теплоты

Цикл образцовый двигателя внутреннего сгорания

Цикл поршневого двигателя внутреннего сгорания со сгоранием топлива при постоянном давлении

Циклы газовых двигателей турбин внутреннего сгорания

Циклы газовых турбин и реактивных двигателей 10- 1. Циклы турбин внутреннего сгорания

Циклы двигателей внутреннего

Циклы двигателей внутреннего сгорания и их термические

Циклы двигателей внутреннего сгорания. Компрессор

Циклы поршневых двигателей внутреннего сгорания

Циклы поршневых двигателей внутреннего сгорания 7- 1. Принцип работы двигателя внутреннего сгорания

Циклы поршневых двигателей внутреннего сгорания Общие сведения

Циклы поршневых двигателей внутреннего сгорания и газотурбинных установок



© 2025 Mash-xxl.info Реклама на сайте