Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплота и работа

Простейшей термодинамической системой является рабочее тело, осуществляющее взаимное превращение теплоты и работы. В двигателе внутреннего сгорания, например, рабочим телом является приготовленная в карбюраторе горючая смесь, состоящая из воздуха и паров бензина.  [c.7]

Как будет показано ниже, элементарное количество теплоты 6Q, так же как и 6L, не является полным дифференциалом в отличие от дифференциала внутренней энергии dU. За этой математической символикой скрыт глубокий физический смысл различия понятий внутренней энергии, теплоты и работы.  [c.14]


Внутренняя энергия — это свойство самой системы, она характеризует состояние системы. Теплота и работа — это энергетические характеристики процессов механического и теплового взаимодействий системы с окружающей средой. Они характеризуют те количества энергии, которые переданы системе или отданы ею через ее границы в определенном процессе jf  [c.14]

Несмотря на эквивалентность теплоты и работы, процессы их взаимного превращения неравнозначны. Опыт показывает, что механическая энергия может быть полностью превращена в теплоту, например, путем трения, однако теплоту полностью превратить в механическую энергию в периодически повторяющемся процессе нельзя. Многолетние попытки осуществить такой процесс не увенчались успехом. Это связано с существованием фундаментального закона природы, называемого вторым законом термодинамики. Чтобы выяснить его сущность, обратимся к принципиальной схеме теплового двигателя (рис. 3.2).  [c.21]

Общий метод расчета по Л, s-диаграмме состоит в следующем. По известным параметрам наносится начальное состояние рабочего тела, затем проводится линия процесса и определяются его параметры в конечном состоянии. Далее вычисляется изменение внутренней энергии, определяются количества теплоты и работы в заданном процессе.  [c.38]

Как указывалось выше, под открытыми понимаются термодинамические системы, которые кроме обмена теплотой и работой с окружающей средой допускают также и обмен массой. В технике широко используются процессы преобразования энергии в потоке, когда рабочее тело перемещается из области с одними параметрами (pi, t i) в область с другими (р2, V2). Это, например, расширение пара в турбинах, сжатие газов в компрессорах.  [c.43]

Согласно первому закону термодинамики, замкнутая система может испытывать изменение внутренней энергии только в результате обмена теплотой и работой с окружающей средой. Так как для этой системы изменение объема указывает на передачу энергии в форме работы, то второе слагаемое уравнения (4-33) можно отождествить с работой, обратимо выполненной системой. Ограничение в виде обратимости необходимо, так как коэффициент при dv представляет собой свойство системы, а именно — давление системы  [c.131]

Рис. 14. Влияние теплоты и работы на энергетические уровни и распределение частиц одноатомного идеального газа Рис. 14. <a href="/info/436855">Влияние теплоты</a> и работы на энергетические уровни и <a href="/info/187612">распределение частиц</a> <a href="/info/240830">одноатомного идеального</a> газа

Рассмотрим цилиндр с газом как систему, окруженную источниками теплоты и работы. Этот цилиндр и источники вместе составляют изолированную систему, к которой применимы концепции второго закона термодинамики.  [c.194]

Например, цилиндр с идеальным газом при давлении 10 атм и комнатной температуре представляет собой рассматриваемую систему, окруженную атмосферой с давлением в 1 атм и при комнатной температуре. Как показано в примере 1 (стр. 199), самопроизвольное расширение от 10 атм до 1 атм может происходить разными путями с различными количествами теплоты и работы, обмениваемыми цилиндром и окружающей средой для каждого пути.  [c.194]

Работы Максвелла и Больцмана составили один из наиболее важных этапов в понимании тепловых величин. С тех пор стало возможным определять температуру либо через макроскопические термодинамические величины, такие, как теплота и работа, либо (с равным основанием и тождественными результатами) как величину, которая характеризует распределение энергии между частицами системы. Однако ограничение кинетической теории Максвелла и Больцмана заключалось в том, что она применима только к системам невзаимодействующих частиц, т. е. исключительно к идеальным газам, а на практике — к реальным газам в пределе низких давлений или высоких температур.  [c.20]

Предметом технической термодинамики является главным образом изучение процессов взаимного преобразования теплоты и работы в различных тепловых машинах.  [c.12]

В общем случае передача энергии в форме теплоты и в форме работы может происходить одновременно. При этом важно отметить, что в различных термодинамических процессах,в зависимости от условий их протекания, количество теплоты и работы будет также различно.  [c.19]

Следовательно, теплота и работа являются функциями процесса. Само понятие теплоты и работы связано с протеканием термодинамического процесса. Если процесса нет, то нет ни теплоты, ни работы.  [c.19]

В силу сказанного с математической точки зрения элементарная теплота dQ и элементарная работа dL не являются полными дифференциалами параметров состояния, а представляют собой бесконечно малые количества теплоты и работы, переданные в элементарном термодинамическом процессе.  [c.19]

Лишь через сто лет после Ломоносова, в первой половине XIX в., наука вплотную подошла к открытию закона сохранения и превращения энергии и эквивалентности теплоты и работы.  [c.52]

В установленном законе Майера говорится не только об эквивалентности теплоты и работы, т. е. о количественном постоянстве энергии, но и об изменении качества самой энергии.  [c.53]

Пример 7-3. 12 кг воздуха при абсолютном давлении б бар и температуре 300° К расширяются при постоянной температуре, объем при этом увеличивается в 4 раза. Определить начальные и конечные параметры воздуха, количество подведенной теплоты и работу расширения.  [c.103]

Найти конечную температуру воздуха и удельные количества теплоты и работы, считая зависимость теплоемкости от температуры нелинейной.  [c.78]

Во-вторых, постулат о равновесии утверждает, что каждая система имеет термодинамические свойства, которые не зависят от ее предыстории, н является функциями состояния системы в равновесии. Специальное название вводится для того, чтобы отличать свойства системы от характеристик процессов (функций процессов), таких как теплота и работа (см. 4).  [c.20]

В предшествующем изложении основное внимание уделялось функциям состояния в связи с возможностью описывать множество термодинамических свойств равновесной системы, опираясь на ограниченный набор независимых переменных. Не меньшим достоинством термодинамического метода является возможность связать между собой различные состояния интересующей системы с помощью характеристик процессов — функций процессов. Используемые в термодинамике функции процессов — это количество теплоты и работа.  [c.38]

В приведенной формулировке содержится два общепринятых соглашения во-первых, называть количеством теплоты и работой количество энергии, полученной или отданной системой соответствующим способом, и, во-вторых, считать положительными работу (W), произведенную системой над окружением, и количество теплоты (Q), полученное ею из внешней среды. Последнее соглашение объясняет знаки в 5.1). Уравнение первого закона в форме (5.1) справедливо для любых систем и процессов, в том числе и для неравновесных процессов и открытых систем, но в последнем случае это уравнение нельзя использовать, так как не удается разделить наблюдаемые изменения энергии на теплоту и работу (см. 7).  [c.42]


Согласно первому закону вклады в изменение внутренней энергии системы делятся на теплоту и работу. Поскольку ве-  [c.61]

Первое начало термодинамики является математическим выражением количественной стороны закона сохранения и превращения энергии в применении к термодинамическим системам. Оно было установлено в результате экспериментальных и теоретических исследований в области физики и химии, завершающим этапом которых явилось открытие эквивалентности теплоты и работы, т. е. обнаружение того, что превращение теплоты в работу И работы в теплоту осуществляется всегда в одном и том же строго постоянном количественном соотношении.  [c.36]

Применимость начал термодинамики ограничивается прежде всего рамками самой термодинамики — ее предметом и исходными положениями. Действительно, тепловое движение, закономерности которого изучает термодинамика, существует лишь в системах из большого числа частиц. Поэтому законы термодинамики неприменимы к микросистемам, размеры которых сравнимы с размерами молекул. Это означает не то, что в таких системах нарушается второе начало,— вечный двигатель второго рода осуществить нельзя с помощью любых систем , а то, что говорить о вечном двигателе второго рода как об устройстве, которое некомпенсированно превращало бы теплоту в работу, в применении к микросистемам лишено смысла, поскольку для них стирается различие между теплотой и работой.  [c.82]

Энергия, переданная системой с изменением ее внешних параметров, также (Называется работой-W (а не количеством работы), а энергия, переданная системе без изменения ее внешних параметров, — количеством теплоты Q. Как видно из определения теплоты и работы, эти два рассматриваемых в термодинамике различных способа передачи энергии не являются равноценными. Действительно, в то время как затрачиваемая работа W может непосредственно пойти на увеличение любого вида энергии (электрической, магнитной, упругой, потенциальной энергии системы в поле и т. д.), количество теплоты Q непосредственно, т. е. без предварительного преобразования в работу, может пойти только на увеличение внутренней энергии системы. Это приводит к тому, что при преобразовании работы в теплоту можно ограничиться только двумя телами, из которых одно тело (при изменении его внешних параметров) передает при тепловом контакте энергию другому (без изменения его внешних параметров) при превращении же теплоты в работу необходимо иметь по меньшей мере три тела первое отдает энергию в форме теплоты (теплоисточник),  [c.23]

Входящие в уравнения термодинамики Q и означают, как следует иа предыдущего, не способ передачи, а энергию, полученную системой соответствующим способом часто их, однако, называют просто теплотой и работой и говорят о превращении теплоты в работу и наоборот.  [c.24]

В 1748 г. М. В. Ломоносов в письме к Эйлеру, высказывая мысль о законе сохранения вещества и распространения его на движение материи, писал Тело, которое своим толчком возбуждает другое тело к движению, столько же теряет от своего движения, сколько сообщает другому . В 1755 г. Французская Академия наук раз и навсегда объявила, что не будет больше принимать каких-либо проектов вечного двигателя. В 1840 г. Г. Г. Гесс сформулировал закон о независимости теплового эффекта химических реакций от промежуточных реакций. В 1842—1850 гг. многие исследователи (Майер, Джоуль и др.) пришли к открытию принципа эквивалентности теплоты и работы.  [c.30]

Вычислим кпд цикла Карно, состоящего из двух изотермических и двух адиабатных процессов. На диаграмме S, Т этот цикл изображен на рис. 10. На изотерме 1—2 теплота Qi берется от теплоотдатчика, на изотерме 3—4 теплота отдается тепло-приемнику. Эти теплоты и работа за цикл равны  [c.67]

Предметом термодинамики является изучение законов взаимных превращений различных видов энергии, связанных с переходами энергии между телами, чаще всего в форме теплоты и работы. Феноменологическая или классическая термодинамика не связана с представлением о микроструктуре вещества, не интересуется поведением и свойствами отдельных молекул, в ней не детализируются энергетические превращения, происходящие внутри тела, не дифференцируются также виды энергии, присущие телу в данном его состоянии.  [c.10]

Таким образом, теплота и работа представляют собой две единственно возможные формы передачи энергии от одного тела к другому.  [c.30]

Количество энергии, передаваемое от одного тела к другому в форме теплоты и работы, зависит от процесса и вследствие этого теплота и работа являются функциями процесса.  [c.30]

Суммарное количество теплоты и работы определяет количество энергии, переданное в процессе энергообмена от одного тела к другому.  [c.30]

В системе СИ, когда теплота и работа выражаются в джоулях, J = Л = 1.  [c.30]

Из принципа эквивалентности теплоты и работы следует, что теплота и работа являются двумя эквивалентными формами передачи энергии.  [c.30]

Отмеченные особенности являются общими в открытых системах изменение энергии нельзя разделить на теплоту и работу. В отличие от рассматриваемого ранее ( 6) случая со связанными переменными V и со в данном случае условия нахождения производных дИldtii)s,b и dS/dni)u,b не являются противоречивыми, но функции t/ и 5 изменяются не только из-за переноса массы, поэтому не существует однозначной взаимосвязи между переменными п, с одной стороны, и U или 5 —с другой, и те и другие переменные должны рассматриваться, следовательно, ак независимые. Число аргументов можно сократить лишь тогда, когда они однозначно связаны друг с другом.  [c.63]

Из определения понятий теп юты и работы (см. 5) следует, что две рассматриваемые в термодинамике формы передачи энергии не являются равноценными в то время как работа W може непосредственно пойти на увеличение любого вида энергии, теплота Q непосредственно, без предварительного превращения в работу, приводит лишь к увеличению внутренней энергии системы. Эта неравноценность теплоты и работы не имела бы значения, если бы можно было без каких-либо трудностей превратить теплоту в работу. Однако, как показывает опыт, в то время как при превращении работы в теплоту явление может ограничиться изменением термодинамического состояния одного лишь теплополучающего тела (например, при нагревании посредством трения или при электронагреве), при преобразовании теплоты в работу наряду с охлаждением теплоотдающего тела происходит изменение термодинамического состояния других тел, участвующих в этом процессе или рабочего тела при незамкнутом процессе, или других тел в замкнутом круговом процессе, когда этим телам рабочее тело непременно отдает часть полученной им от нагревателя теплоты. В качестве таких других тел в тепловых машинах обычно служат холодильники.  [c.50]


Наука, занимающаяся изучением законов взаимопреобразования и передачи энергии, называется термодинамикой. Следовательно, термодинамика в наиболее общем смысле предстазляет собой науку об энергии. Исторически термодинамика возникла в результате изучения взаимопревращения теплоты и работы в теп [овых машинах этот раздел термодинамики называется технической тер-  [c.5]


Смотреть страницы где упоминается термин Теплота и работа : [c.23]    [c.204]    [c.15]    [c.18]    [c.53]    [c.72]   
Смотреть главы в:

Техническая термодинамики и теплопередача  -> Теплота и работа

Основы термодинамики и теплотехники  -> Теплота и работа



ПОИСК



341 потери теплоты конвективные и теплоизлучением 339 потери теплоты при контакте полосы с валками 339, 340 разогрев металла от работы деформации

Аналитическое выражение для работы и теплоты процесса

Внутренняя энергия системы. Работа и теплота

Внутренняя энергия, теплота, работа

Единицы измерения теплоты, работы и мощности

Зависимость количества работы и теплоты от характера термодинамического процесса

Значение расширенных концепций теплоты, работы и рабочего тела

Лабораторная работа ТД-8. Термодинамический анализ превращения теплоты в работу в двигателе внутреннего сгорания

Несимметричность взаимных превращений теплоты и работы. Принцип Карно

Общетехнические сведения о газах, теплоте, работе, мощности

Особенности превращения теплоты в работу и ее перехода от одного тела к другому

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ Теплота. Опыт Джоуля. Эквивалентность теплоты и работы

Понятие о теплоте, работе, внутренней вперши. . — Формулировка первого закона термодинамики Энтальпия

Понятия о теплоте, работе и их взаимном превращении

Превращение теплоты в механическую работу

Превращение теплоты в работу

Превращение теплоты в работу в тепловом двигателе

Преобразование солнечной энергии в теплоту, работу и электричество

Принцип эквивалентности теплоты и работы

Работа 11. Определение теплоты парообразования для воды

Работа в термодинамике. Теплота Первое начало термодинамики

Работа и теплота в открытых система

Работа и теплота в равновесных процессах

Работа и теплота газового процесса. Внутренняя энергия газа и ее изменение

Работа и теплота процесса

Работа и теплота процесса. Теплоемкость

Работа и теплота — формы обмена энергией

Работа, внутренняя энергия и теплота политропного процесса

Расширенные концепции теплоты, работы и рабочего тела Расширенная концепция теплоты

Релятивистские работа и количество теплоты

Теплота, работа, мощность

Теплота. Принцип эквивалентности теплоты и работы

Эквивалентность теплоты и работы



© 2025 Mash-xxl.info Реклама на сайте