Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Глубина Режимы

Глубина Режимы Подача s, мм о6  [c.44]

Глубинный режим. Перенос излучения в предельном случае больших оптических толщ характеризуется рядом относительно простых закономерностей, при наличии которых обычно и говорят о глубинном режиме. В этом асимптотическом случае уравнения переноса излучения удается не только упростить, но и решить в аналитическом виде. В теории переноса излучения этот случай является одним из немногих и ярких примеров успешного решения задачи в рамках экспериментально обоснованных приближений.  [c.67]


Следовательно, в глубинном режиме имеет место разделение переменных  [c.68]

Соотношения (2.62) — (2.64) определяют угловую зависимость и поляризацию рассеянного излучения в глубинном режиме. В частности, для интенсивности имеет место пропорциональное увеличение с г , что согласуется с эмпирической зависимостью, полученной В. А. Тимофеевой.  [c.70]

Глубина, па которую расплавляется основной металл, называется глубиной проплавления. Она зависит от режима сварки (силы сварочного тока и диаметра электрода), пространственного положения сварки, скорости перемещения дуги по поверхности изделия (торцу электрода и дуге сообщают поступательное движение вдоль направления сварки и поперечные колебания), от конструкции сварного соединения, формы и размеров разделки свариваемых кромок и т, п. Размеры сварочной ванны зависят от режима сварки и обычно находятся в пределах глубина до 7 мм, ширина 8—15 ми, длина 10—30 мм. Доля участия основного металла в формировании металла шва (см. гл. III) обычно составляет 15—35%.  [c.18]

Рассчитывают погонную энергию и по формуле (23)—(28) определяют основные размеры шва. Если глубина провара и другие размеры шва удовлетворяют поставленным требованиям, то аналогично рассчитывают режим сварки с другой стороны шва. Ь случае необходимости проводят корректировку режима.  [c.194]

Если сталь сваривалась в исходном термическом упрочненном состоянии, то структурные изменения затронут и зону III (рис. 305,г). В ней металл будет отпущен почти до отожженного состояния. При этом наблюдается полоска полного отпуска. Глубина разупрочнения определится составом стали (склонностью к разупрочнению при отпуске), а ширина — режимами сварки.  [c.399]

Подбирая соответствующие составы стали (легированная элементами, задерживающими разупрочнение кремнием, молибденом, ванадием и др.) и режимы сварки, можно уменьшить глубину и ширину зоны разупрочнения, но ее образование неизбежно и это следует учитывать при оценке прочности сварных соединений.  [c.399]

При назначении режимов резания определяют скорость резания, подачу и глубину резания.  [c.257]

Упрочнение металла обработанной поверхности заготовки проявляется 13 повышении ее поверхностной твердости. Твердость металла обработанной поверхности после обработки резанием может увеличиться в 2 раза. Значение твердости может колебаться, так как значение пластической деформации и глубина ее зависят от физико-механических свойств металла обрабатываемой заготовки, геометрии режущего инструмента и режима резания.  [c.268]


Условно поверхностный слой обработанной заготовки можно разделить на три зоны (рис. 6.12, б) / — зона разрушенной структуры с измельченными зернами, резкими искажениями кристаллической решетки и большим количеством микротрещин ее следует обязательно удалять при каждой последующей обработке поверхности заготовки // — зона наклепанного металла III —основной металл, В зависимости от физико-механических свойств металла обрабатываемой заготовки и режима резания глубина наклепанного слоя составляет несколько миллиметров при черновой обработке и сотые и тысячные доли миллиметра при чистовой обработке. Пластичные металлы подвергаются большему упрочнению, чем твердые.  [c.268]

Основные элементы режима резания — скорость резания, подача и глубина резания. Для рационального ведения процесса шлифования необходимо выбирать их оптимальные значения.  [c.360]

Обкатывают, как правило, наружные поверхности, а раскатывают внутренние цилиндрические и фасонные поверхности. При обкатывании роликами основными параметрами режима упрочнения являются давление в зоне контакта с роликом, число его проходов, подача и скорость обкатывания. Глубину деформированного слоя определяет давление.  [c.385]

РАСЧЕТ И ПРОВЕРКА РЕЖИМОВ АВТОМАТИЧЕСКОЙ СВАРКИ ПОД СЛОЕМ ФЛЮСА ПО ЗАДАННОЙ ГЛУБИНЕ ПРОВАРА  [c.44]

Основными параметрами режима электрошлаковой сварки проволочным электродом являются следующие величины диаметр электродной проволоки (обычно принимается равным 3 мм), сила сварочного тока, скорость подачи электрода, напряжение на шлаковой ванне, скорость сварки, толщина свариваемого металла, скорость поперечных перемещений электрода, время выдержки у ползуна при сварке с поперечными колебаниями, величина недохода при сварке несколькими проволоками, количество сварочных проволок (электродов), величина зазора, марка флюса, глубина шлаковой ванны, недоход электрода до ползуна. Все эти параметры существенно влияют на качество и формообразование сварного шва и должны правильно подбираться.  [c.52]

Глубину погружения в масло деталей червячного редуктора принимают при нижнем расположении червяка (рис. 11.3, а) = (0,1. ..0,5) 2д при верхнем (рис. 11.3, б) Н = Ъп...о,2562- Однако при частых включениях и кратковременном режиме работы (пуск — останов — пуск) смазывание зацепления оказывается недостаточным. Во избежание этого уровень масла поднимают до зацепления.  [c.174]

Степень наклепа металла и глубина проникновения пластических деформаций зависят от метода обработки и режима резания (подачи, глубины и скорости резания). При повышении подачи и глубины резания толщина наклепанного слоя увеличивается, при повышении скорости резания, напротив, уменьшается. При легком режиме резания толщина наклепанного слоя выражается в сотых долях миллиметра, а при более тяжелых (при большой подаче и глубине резания) — в десятых долях миллиметра.  [c.81]

Для лучшего использования станка по време,ни необходимо стремиться к тому, чтобы станок работал по,возможности непрерывно, без остановок для вспомогательных действий, без простоев по каким-либо причинам и при наиболее выгодных режимах резания, (скорости резания, подаче, глубине резания),  [c.123]

При тонком точении обработка производится алмазными резцами или резцами, оснащенными твердыми сплавами последние в ряде случаев заменяют алмазные резцы. Метод алмазного точения сохранил свое название и при замене алмазных резцов резцами из твердых сплавов, но с режимами резания, примерно такими же, какие применяются для алмазных резцов и характеризуются высокими скоростями резания при малой подаче и малой глубине резания.  [c.188]

Задачи подобного типа в технологии машиностроения возникают, как правило, при определении оптимальных режимов резания [33]. Например, оптимальные режимы резания при назначении маршрута черновой обработки поверхности заготовки должны быть учтены ограничениями, связанными с техническими данными оборудования, характеристиками режущего инструмента, ра.з-мерами детали и т. д. Эти ограничения выражаются через параметры переходов (рабочих ходов), определяющих режимы резания глубину резания t, подачу 5, скорость резания V и соответствующие условия обработки мощность привода оборудования допустимую силу, дей-  [c.134]


Пример применения метода регулярного поиска для определения оптимальных режимов резания при обработке ступенчатых валов на токарном гидрокопировальном полуавтомате (рис, 3.55). Задаются исходные данные (размеры и материалы детали, режущий инструмент, глубина резания, жесткость узлов станка, цикловые и внецикловые потери времени работы оборудования) требуется найти режим обработки (sj, п,), удовлетворяющий условиям по точности обработки шероховатости поверхности  [c.136]

Процесс резания характеризуется режимами, т. е. совокупностью значений скорости резания и подачи или скорости движения подачи и глубины резания.  [c.19]

Производительность и надежность повысятся также за счет правильного выбора скорости резания. Опыт эксплуатации станков с ЧПУ показал, что скорость резания следует выбирать с учетом особенностей типовых технологических процессов рабочие ходы каждого инструмента осуществляются с различными глубиной подачи резания, подачей и скоростью при различных направлениях перемещения каждый инструмент в течение периода стойкости обрабатывает заготовки из одинаковых или различных материалов каждый рабочий ход выполняется на режимах, обеспечивающих более полное использование возможностей станка и инструмента инструменты используют в составе разнообразных многоинструментальных наладок, заменяют их по мере затупления, а также при смене детали.  [c.241]

Лазерную резку материалов осуществляют как в импульсном, так и в непрерывном режиме. При резке в импульсном режиме непрерывный рез получается в результате наложения следующих друг за другом отверстий. Наиболее широкое применение получила резка тонкопленочных пассивных элементов интегральных схем, например, с целью точной подгонки значений их сопротивления или емкости. Для этого применяют импульсные лазеры на алюмо-иттриевом гранате с модуляцией дробности, лазеры на углекислом газе. Импульсный характер обработки обеспечивает минимальную глубину прогрева материала и исключает повреждение подложки, на которую нанесена пленка. Лазерные установки различных типов позволяют вести обработку при следующих режимах энергия излучения 0,1. .. 1 МДж, длительность импульса 0,01. .. 100 мкс, плотность потока излучения до 100 мВт/см, частота повторения импульсов 100. .. 5000 импульсов в 1 G. В сочетании с автоматическими управляющими системами лазерные установки для подгонки резисторов обеспечивают производительность более 5 тысяч операций за 1 ч. Импульсные лазеры на алюмо-иттриевом гранате применяют также  [c.299]

Совокупность закономерностей переноса излучения в глубинном режиме впервые была получена экспериментально В. А. Тимофеевой [32] и Ленобль [38]. На рис. 2.8 приведена в полулогарифмическом масштабе зависимость интенсивности излучения при разных углах наблюдения от глубины сильно рассеивающей среды (раствор молока в воде) по данным [32]. Как видно  [c.67]

Я глубина его проплавления остается практически постоянной. Этот параметр режима широко используют в практике для регулирования ширины Н1ва.  [c.37]

В начале сварки, когда осповпой металл еще не прогрелся, глубина его проплавлепия уменьшена, в св [зи с чем эту часть шва обычно выводят на входную плапку. По окончании сварки в место кратера образуется ослабленный шов, поэтому процесс сварки заканчивают па выводной планке. Входную и выводную нлапки ширипой до 150 мм и длиной (в зависимости от режима и толщины металла) до 250 мм закрепляют на прихватках до начала сварки. После сварки планки удаляют.  [c.38]

Устойчивость алектрошлакового процесса, форма шва и глубина проплавления основного металла зависят от параметров режима сварки. К основным параметрам относятся скорость сварки Уев, сварочный ток /ев, скорость подачи электродов Un, напряжение сварки t/св, толщина металла, приходян аяся на один электрод, расстояние между электродами s. Вспомогательные составляющие режима зазор между кромками Ьр, состав флюса, глубина шлаковой ванны /гщ в, скорость возвратно-поступательных движений электрода, его сухой вылет 1 , сечение  [c.73]

При ручной дуговой Bapjie плавящимся электродом размеры сварного шва в большинстве случаев определяются размерами разделки кромок соединений, подготовленных под сварку. Поэтому необходимости определения глубины провара при ручной дуговой сварке, как правило, не возникает. Исключение может составлять только сварка стыковых соединений без разделки кромок, диапазон толщин которых согласно ГОСТ 5264—69 ограничен. Этим ГОСТом регламентированы также конструктивные элементы подготовки кромок соединений различных видов исходя из условий получения необходимой величины проплавления и формы шва при использовании режимов сварки в ншроком диапазоне.  [c.183]

При наличии разделки кромок размеры глубины провара и высоты валика будет отличаться от разл(еров, полученных при сварке стыковых соединений без разделки па одинаковом режиме. Однако наличие разделки, зазоров, тип шва влияют главным образом на соотношение долей участия осно1шого и наплавленного металла, а контур провара и общая высота П1ва С при неизменном режиме сварки остаются практически одинаковыми (рис. 98). Поэтому  [c.191]

Г[о формуле (34) находят значение напряжения дуги и по (24) коэффпциепт формы провара, при атом необходимо иметь в виду, что Т1апря/1 ение дуги следует выбирать ближе к ни/кнему пределу диапазона оптимальных значений. Определив погонную энергию д , находят глубину провара и другие размеры шва при сварке стыкового бесскосного соединения на принятом режиме.  [c.197]

Суммируя с и С2, находят высоту наплавленного металла С, а зная общую высоту шва С (рассчитанную при наплавке на данном реягиме), определяют глубину проплавления притупления и тем самым решают вопрос о пригодности принятого режима для обеспечения сплошного провара стенки тавра.  [c.198]

Элементы режима резания назначают в определенной последовательности, Сначала назначают глубину резания. При этом стремятся весь ирипуск на обработку срезать за один рабочий ход инструмента. Если по технологическим причинам необходимо делать два рабочих хода, то при первом ходе снимают —80 % припуска, при ьтором (чистовом) 20 % припуска. Затем выбирают величину подачи. Рекомендуют назначагь наибольшую допустимую неличину подачи, учитывая требования точности и допустимой шероховатости обработанной поверхности, а также мощность станка, режущие свойства материала инструмента, жесткость и динамическую характеристику системы СПИД. Наконец, определяют скорость резания, исходи  [c.275]


Режим резания. К режиму резания нрп фрезеровании относят скорость резания о, подачу s, глубину резания t, ширину фрезеропарп4я В.  [c.330]

Подача при про1ягивании как самостоятельное движение инструмента нлн заготовки отсутствует. За величину подачи определяющую толщину срезаемого слоя отдельным зубом протяжки, принимают подъем на зуб, т. е. разность размеров по высоте двух соседних зубьев протяжки s, является одновременно и глубиной резания, Подача в основном зависит от обрабатываемого материала, кон-струкцнн протяжки п жесткости заготовки н составляет 0,01 — 0,2 мм/зуб. Оптимальные параметры режима резания выбирают из справочников.  [c.343]

Подачами являются перемеш,ения заготовки или инструмента вдоль или вокруг координатных осей. Выражения и размерности подач определяются схемами шлифования. Глубина резания t (мм) определяется толщиной слоя материала, срезаемого за один проход. Оптимальные режимы резания выбирают по справочным данным. Для расчета элементов ишифовальных станков, конструирования приспособлений для работы на них и оценки точности обработки необходимо знать силы резания. Силу резания Р, возникающую при шлифовании в зоне контакта круга и заготовки, для удобства расчетов разлагают по координатным осям на три составляющие (рис. 6.92) тангенциальную Р , радиальную Ру и осевую Р . Составляющую Ру используют в расчетах точности обработки, Р — необходима для проектирования механизмов подач шлифовальных станков, Р используют для определения мощности электродвигателя шлифовального круга.  [c.361]

Установление режимов резания для цилиндрических, хвостовых и. тисковых фрез заключается в определении при заданной глубине резания, подачи на зуб (в мм1зуб), минутной подачи (в мм1мин), скорости резания (в м1мин), числа оборотов фрезы в минуту, тангенциальной составляющей силы резания [в кГ (н)1 и эффективной мощности (в квт) при работе торцовыми фрезами определяют подачу на зуб, минутную подачу, скорость резания, число оборотов и эффективную мощность.  [c.140]

При установлении режимов резания для шлифования определяют скорость вращения шлифовального круга (в м1сек) в зависимости от обрабатываемого материала, скорость вращения обрабатываемой детали (в м1мин), продольную подачу круга (для обычного метода шли- рования — в долях круга, для глубинного — в миллиметрах на оборот детали), поперечную подачу — глубину резания (в миллиметрах — при работе круга с продольной подачей, в миллиметрах на оборот изделия — при шлифовании в упор), число оборотов стола и глубину шлифования на один оборот (при шлифовании на станках карусельного типа), скорость хода стола (в м1мин) при шлифовании на станках продольного типа.  [c.140]

Рнс. 80. Распределение коицеитра-ции алюминия по глубине слоя при разных режимах алптирования стали 10 Б порошкообразной смеси /—6ч 900 С - G ч, 1000 С 3 2 ч, 1000 С  [c.120]


Смотреть страницы где упоминается термин Глубина Режимы : [c.267]    [c.774]    [c.69]    [c.365]    [c.35]    [c.68]    [c.74]    [c.31]    [c.71]    [c.126]    [c.297]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.0 ]



ПОИСК



627—629 — Г азы отходящие Состав 626, 629 — Глубина слоя — Определение 631 — Карбюризаторы 627, 629, 631 — Режимы 624, 629—632 — Термическая обработка последующа

Выбор режима резания Определение глубины резания, подачи и скорости резания

Глубина

Глубина предельная при критическом режиме

Лабораторная работа 7. Расчет и проверка режимов автоматической сварки под слоем флюса по заданной глубине про вара

Наплавка автоматическая под слоем флюса — Возможные дефекты 125 Глубина проплавления 124 — Режимы 131 — Рекомендуемые флюсы

Напряженное состояние глубинных коллекторов. Упругий режим фильтрации

Обработка термомеханическая средства 555 - Влияние на эксплуатационные свойства деталей 560 - Износостойкость 561 - Инструмент и приспособления 556 - Глубина упрочнения 558, 559 - Параметры шероховатости 560 - Применение 562 - Режимы

Пайка со сталями — Зависимость глубины пропитки графита и прочности соединения от давления сжатия 277 — Покрытия 278 — Прнпон 279 — Режимы

Режим работы погружных агрегатов в скважинах различной глубины

Режимы резания Глубина резания и число проходо

Режимы холоднокатаная — Виды поставляемого полуфабриката 170 — Глубина сферической лунки при испытании

Резанце металлов — Виды — Основные элементы — формулы 414—417 — Глубина, подача, режимы, скорость, условия

Сталь - Глубина сверления 788 - Обеспечение конструкционной прочности при термической обработке 369 Обрабатываемость 202 - Поверхностная закалка при индукционном нагреве 372 - Полирование 252, 253 Режимы лезвийного резания 127, 128 - Режимы резания

Сталь - Глубина сверления 788 - Обеспечение конструкционной прочности при термической обработке 369 Обрабатываемость 202 - Поверхностная закалка при инструментами из ПСТМ 592 - Режимы резания при



© 2025 Mash-xxl.info Реклама на сайте