Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение геометрической связи оси вращения

Со стати ко-геометрической аналогией связана возможность записать уравнения теории оболочек в комплексной форме. Для осесимметричных оболочек вращения она была обнаружена в [162, 163, 1831, а затем в работах [90, 96—98] было показано, что такой результат может быть достигнут и для оболочек произвольного очертания. На этом основан хорошо известный комплексный метод В. В. Новожилова, породивший обширную литературу [21, 129, 130, 185, 189]. Примеры применения комплексной записи уравнений теории оболочек встретятся и в предлагаемой книге, но специально на комплексном методе мы останавливаться не будем.  [c.78]


Для оболочек вращения эту связь можно выразить более просто и конкретно статические и геометрические безмоментные уравнения становятся тождественными друг другу в силу следующих соотношений двойственности  [c.199]

Уравнение. насоса определяет связь между давлением компонента топлива на выходе из насоса и частотой вращения, расходом, давлением на входе и геометрическими размерами.  [c.27]

Каждая из винтовых линий МдЛ1 и М М является геометрическим местом точек, которыми в процессе зацепления зуб одного колеса касается последовательно зуба другого колеса. Эти линии называют контактными. В любом сечении цилиндров плоскостью, перпендикулярной к их осям, находится только одна точка зацепления (точка перес-ечения плоскости с линией зацепления МоМ), в которой в некоторый момент времени происходит совпадение двух точек, принадлежащих различным контактным линиям, т. е. происходит касание сопряженных поверхностей зубьев. Поэтому зацепление М. Л. Новикова называют точечным. Таким образом, в отличие от обычных эвольвентных косозубых колес здесь образуется не поле зацепления, а линия зацепления. Кроме точки зацепления в упомянутой плоскости находится также мгновенный центр относительного вращения, соответствующий этой плоскости. Мгновенный центр перемещается по оси Р Р от точки Ра к точке Р с такой же скоростью, с какой точка зацепления перемещается по линии зацепления М М, и описывает на равномерно вращающихся начальных цилиндрах винтовые линии РцР и Р Р. Точки контактных линий, совпадающие в точке зацепления, имеют различные скорости. Например, скорость Vmi точки Ml, принадлежащей первой контактной линии, равна произведению OiM fflj и перпендикулярна к 0,уИ, а скорость Vm, точки М , принадлежащей второй контактной линии, равна произведению О М 2 и перпендикулярна к О М. Относительная скорость Vm.m, этих точек, являющаяся скоростью скольжения контактных линий одной по другой, связана со скоростями Vm, и Vm, векторным уравнением  [c.226]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]


В связи со сложностью турбулентных течений общего вида большую ценность для изучения многих вопросов представляет геометрически простейший пример турбулентного движения, а именно, случай так называемой однородной и изотропной турбулентности (впервые рассмотренный Дж. Тейлором в 1935 г.). Этот случай соответствует турбулентности в безграничном пространстве, у которой распределения вероятностей для значений гидродинамических полей в любой конечной группе пространственно-временных точек (a ft, д) (А = 1,. . ., п) инвариантны относительно всех ортогональных преобразований (параллельных переносов, вращений и отражений) системы пространственных координат (т. е., иначе говоря, не меняются при всех переносах, вращениях и отражениях выбранной группы точек). В силу указанных условий инвариантности структура статистических моментов (1.1) и вид уравнений Фридмана — Келлера для моментов (1.2) в случае однородной и изотропной турбулентности (которую для краткости далее мы называем просто изотропной) оказываются наиболее простыми (хотя уравнения для моментов все равно остаются незамкнутыми). Поэтому модель изотропной турбулентности наиболее удобна для отработки различных приближенных приемов замыкания уравнений турбулентного движения и изучения всевозможных следствий из той или иной точной или приближенной теории. В то же время оказывается, что идеализированная модель изотропной турбулентности является  [c.480]

Установим связь между отклонениями размерных параметров относительного движения и точностью обработки детали. Пусть точка М (вершина инструмента) движется в системе координат Ед в соответствии с заданным относительным движением, тогда в системе Ед она опишет винтовую линию (рис. 1.35, а). Следовательно, в каждой секущей плоскости будет один след пересечения винтовой линией этой плоскости. С помощью выведенных уравнений относительного движения (1.6) можно рассчитать радиус-вектор Гдр вершиной которого является точка пересечения винтовой линии с плоскостью N1. Таким образом, геометрически процесс образования поверхности детали можно представить в виде изменения по величине и направлению радиуса-вектора Гд. Любую деталь типа тела вращения можно представить как совокупность бесчисленного множества профилей поперечных сечений, лежащих в плоскостях, секущих деталь перпендикулярно оси ОдХд (рис. 1.35,6). Поэтому, установив влияние отклонений параметров относительного движения на точность обработки детали в поперечном сечении, можно определить их влияние на точность обработки детали в целом. Рассмотрим образование профиля детали в поперечном сечении. Для этого спроектируем Гд на секу-щую плоскость N1 (рис. 1.36, а) и обозначим его проекцию через г .  [c.93]


Основной курс теоретической механики. Ч.1 (1972) -- [ c.137 ]



ПОИСК



124 — Уравнение с вращением

Связь геометрическая

Уравнение геометрической связи

Уравнения геометрические

Уравнения связей



© 2025 Mash-xxl.info Реклама на сайте