Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гидравлические средства управления

Гидравлические средства управления.  [c.277]

Гидравлические средства управления 729  [c.433]

Гидравлические средства управления 729 Гидрокопировальные суппорты — Характеристики 711  [c.435]

В состав гидравлических средств управления входят датчики для подачи сигналов, аппараты для преобразования сигналов.  [c.282]

ГИДРАВЛИЧЕСКИЕ СРЕДСТВА УПРАВЛЕНИЯ  [c.163]

В состав гидравлических средств управления входят датчики для подачи сигналов и преобразователи сигналов. Системы гидравлического управления монтируются из нормализованных гидравлических аппаратов и устройств. В качестве датчиков для подачи сигналов на выполнение команд применяются управляемые от упоров золотники с осевым или угловым движением переключающего элемента. Промышленность изготовляет осевые золотники с механическим, электрическим и электрогидравли-ческим управлением.  [c.163]


Что представляют собой гидравлические средства управления  [c.184]

Гидравлические средства управления. В состав гидравлических средств управления входят датчики для подачи сигналов, аппараты для преобразования сигналов.  [c.79]

За последние годы благодаря совершенствованию гидравлических средств управления большое распространение получили гидрокопировальные следящие системы.  [c.137]

Повышение рабочих давлений, температур окружающей среды и скоростей движения гидроагрегатов повлекло за собой использование при изготовлении уплотнений более пригодных для этих условий материалов. Эти материалы должны обладать отличными уплотнительными и герметизирующими свойствами. Такими материалами являются полимеры. Однако практическое применение в машинах с пневматическими и гидравлическими системами управления нашли только те полимеры, которые обладают достаточно высокими показателями прочности. Для повышения надежности уплотнители из полимеров используются в сочетании с традиционными материалами (резина, бронза, сталь). Например, эффективным средством повышения надежности агрегатов в пневмогидравлических системах высокого давления явилось использование полимерных уплотнений клапанного типа. Как показали исследования, более долговечными и надежными являются металлопластмассовые клапаны, т. е. клапаны, в которых полимерные уплотнители упрочнены металлическим корпусом.  [c.6]

Клапаны [F 16 <в гидравлических амортизаторах и пружинах F 9/34-9/348 диафрагменные К 1/00-1/20 индикаторные, регистрирующие или сигнальные устройства для них К 37/00 конструктивные элементы и средства управления К 25/00-51/00 многоходовые 11/00-11/24 отсечные для сопел или форсунок К 23/00 питательные (К 21/00-21/20 дозирующие К 21/16) подъемные (К 1/00-1/54 конструктивные элементы К 1/32-1/54) смазка К 3/36, 5/22 смесительные К 11/00-11/12 в соединениях труб L 29/00 управляющие устройства К 31/00-31/72 электромагнитные в многоходовых запорных устройствах К 11/23) В 60 Т запорные транспортных средств 17/04 11/28-11/34 15/00-15/60) в тормозных системах изготовление (деталей клапанов ковкой или штамповкой К 1/20-1/24 клапанных седел D 53/10) В 21 инструменты для монтажа или демонтажа В 25 В 27/24 F 02 М <в карбюраторах (1/00, 5/00, 7/00, 9/00, 11/00, 17/00 типа бабочка 17/12) в топливных (насосах 59/46 форсунках 61/04-61/12, 61/20, 67/12)> в насосах F 04 В 21/02 F 01 охлаждение в двигателях Р 1/08, 3/14 перепускные в паровых машинах В 31/22-31/24) предотвращающие повторное наполнение тары В 65 D 49/02-49/10 предохранительные (F 16 К 17/00-17/42 в парогенераторах F 22 В 37/44) разгрузочные F 16 К 17/00-17/42 В 67 D размещение в устройствах переливания 5/34 в устройствах для разлива или отпуска 1/14, 3/02-3/04) жидкостей в сосудах для газов или жидкостей F 17 С 13/04 в топках и устройствах для сжигания F 23 L 3/00, 11/00-13/10 в холодильных машинах, размещение F 25 В 41/04 шлифование В 24 В 13/00-13/04, 15/02-15/04]  [c.93]


Достоинством таких вентилей является высокая герметичность, даже при значительной загрязненности протекающей жидкости. Благодаря упругости диафрагмы предупреждается повреждение гнезда при загрязнении его твердыми частицами, например песком. Отсутствие сальников облегчает обслуживание вентиля и исключает возможность вытекания жидкости вдоль шпинделя. Форма диафрагмы обеспечивает благоприятные условия протекания через вентиль и относительно малое гидравлическое сопротивление. Диафрагма является долговечным элементом и, кроме того, ее легко заменить. Для увеличения надежности в некоторых диафрагменных вентилях применяются сальники (фиг. XVI. 11). Достоинством автоматических диафрагменных вентилей является их высокая чувствительность. При дистанционном управлении средством управления является вода, подаваемая под давлением на диафрагму.  [c.347]

Управляющие элементы гидравлических следящих приводов могут иметь и другие конструктивные решения, помимо рассмотренных (плоские золотники, различные клапаны и дроссели), однако при всем возможном многообразии средств управления принципы структурного синтеза схем приводов сохраняются.  [c.38]

Упоры выполняют роль не только ограничителей перемещения, но и являются средствами управления. Они могут давать различные команды узлам линии. Упоры — путевые переключатели бывают механическими, пневматическими, гидравлическими или электрическими. Механические переключатели применяются для простых движений пуска и останова. Электрические путевые переключатели с помощью электрического сигнала воздействуют на электродвигатель, электромагнитные муфты ли на различные электромагнитные устройства и через них передают движение исполнительному механизму.  [c.149]

Если режущему инструменту нужно задать, определенное сложное движение, то применяют копиры. Для-особо сложных деталей применяются системы механического и гидравлического копирования. При механическом копировании копир одновременно выполняет две роли механизма управления и механизма подачи инструмента. В копировальных системах средствами управления является скользящий щуп, который скользит по специальному копиру. Системы такого управления позволяют путем построения циклограмм заранее рассчитать рабочий цикл любой сложности, обеспечив строгое выполнение заданного технологического процесса обработки детали за определенный промежуток времени.  [c.149]

Послевоенные годы характеризуются необычайно интенсивным применением моделирующих установок для исследования различных систем регулирования. При этом в большинстве случаев исследуются характеристики систем, составленных из серийных элементов. Однако чрезвычайно многообещающей областью применения моделирования, значение которого еще в большой степени недооценивается, является использование его как средства проектирования на этапе теоретической разработки. Ниже будет рассмотрен пример использования моделирования при проектировании гидравлической системы управления.  [c.393]

Структурная схема абстрагируется от средств управления осуществления движений и позволяет поэтому до выбора этих средств (механических, гидравлических, электрических и др.) и до составления кинематической схемы полуавтомата наметить основные команды и их последовательность, выявить функциональные зависимости между отдельными целевыми механизмами.  [c.37]

Структурная схема у правления автомата позволяет выявить сущность его цикла, последовательность совершения команд управления циклом и поэтому особенно важна для автоматов со сложными циклами, понимание осуществления которых не всегда может дать кинематическая схема. Структурная схема абстрагируется от средств управления осуществления движений и позволяет поэтому до выбора этих средств (механического, гидравлического и т. д.) и до составления кинематической схемы автомата наметить основные команды и их последовательность.  [c.131]

В энергетике благодаря однородности технологии производства электрической и тепловой энергии и однотипности (в принципе) оборудования (паровые и гидравлические турбины, котлы и реакторы АЭС, насосы и вентиляторы) имеются особенно благоприятные условия для использования типовых алгоритмов и программ. Это значительно облегчает условия по созданию и внедрению АСУ в энергетику. При однотипности технических средств автоматизации (ЭВМ типа ряд, управляющие ЭВМ, периферийные устройства) типовые программы найдут щирокое применение во всех звеньях управления энергетикой.  [c.276]


В современных машинах-автоматах широко применяются механические, пневматические, гидравлические, электрические и комбинированные системы автоматизации, которые требуют специальных методов расчета и проектирования. Кроме того, появилась необходимость использовать специальные средства автоматического управления, контроля и регулирования.  [c.3]

F 15 <В — Пневмогидравлические системы общего назначения, гидравлические и пневматические исполнительные механизмы, например сервомеханизмы, конструктивные элементы и принадлежности пневмогидравлических систем, не отнесенные к другим рубрикам С — Элементы пневматических и гидравлических цепей, предназначенные в основном для вычислительных машин или систем управления и регулирования D — Средства воздействия на поток текучей среды)  [c.38]

Дезактивация радиоактивных отходов G 21 F 9/00-9/36 Дезинтеграторы (В 02 С для измельчения отходов резины или пластмасс В 29 В 17/00) Декалькомания В 41 М 3/12, В 44 С 1/16 Декапирование (металлических изделий электролитическими способами С 25 F 1/02-1/18 металлов растворами или расплавами солей С 23 G 1/00-1/36) декомпрессия (водолазов, устройства В 63 С 11/32 двигателей, клапаны для этой цели F 01 L 13/08) Делительные В 23 (приспособления к станкам для изготовления зубчатых колес и реек F 23/10 устройства металлорежущих станков Q 16/02-16/12) демпферы конструктивные элементы 9/32-9/54) для канатных дорог В 61 В 12/04 нутации для космических летательных аппаратов В 64 G 1/38 в подвесках транспортных средств В 60 G 13/00-15/12, 17/06-17/10, В 61 F 5/12, G 01 М 17/04) Демпфирование вибраций или колебаний переднего колеса летательных аппаратов В 64 С 25/50 G 05 (в регуляторах скорости D 13/06 в системах управления В 5/00-5/04)) Демпфирующие ( компенсационные муфты F 16 D 3/12-3/14 устройства (испытание G 01 М 17/04 многоступенчатых карбюраторов F 02 М 11/04))  [c.73]

F 02 Р 23/02 Фрикционные [ амортизаторы F 7/00-7/08 вариаторы Н 15/(04—44, 50—54) зажимы G 3/07, 11/04 муфты сцепления (автоматические центробежные D 43/18 с гидравлическим или пневматическим управлением D 25/(062—065) узлы и детали D 13/(58—75) D 13/(00—76)) соединения (деталей машин В 2/00-2/26 труб и шлангов 37/(00—20)) см. также передачи) F 16 демпферы в подвесках транспортных средств В 60 G 13/04, 15/(04, 10)]  [c.205]

Гидравлический следящий привод широко применяется в машиностроении как эффективное средство автоматизации. В станкостроении он успешно используется в копировальных системах, работающих от жесткого шаблона, для выполнения точных делительных и установочных операций в агрегатных станках и автоматических линиях, составляет основу большинства систем числового программного управления. В колесных и гусеничных транспортных машинах применение гидравлического следящего привода позволяет обеспечить легкое управление. В самолетах и ракетах большое распространение рассматриваемые приводы получили в системах ручного и автоматического управления в форме бустеров, гидроусилителей, исполнительных устройств, автопилотов, систем наведения и др. Гидравлический следящий привод все шире применяется для автоматизации заготовительно-штамповочного и кузнечно-прессового оборудования, в специализированных испытательных стендах для осуществления высокочастотных вибрационных колебаний и во многих других машинах и оборудовании.  [c.3]

Наибольшее распространение в машиностроении получили однокоординатные гидравлические следящие приводы дроссельного управления благодаря исключительной простоте их конструкции и высокой надежности в эксплуатации. Эти приводы, состоящие из комбинаций различных управляющих дроссельных золотников и гидродвигателей, могут вместе с тем рассматриваться в качестве типовых звеньев, лежащих в основе всех существующих гидравлических следящих приводов. Принцип действия и методы построения схем таких приводов рассматриваются в главе П. Далее в ней приводятся статические и динамические характеристики основных элементов этих приводов и рассматриваются вопросы устойчивости и качества регулирования приводов в виде линеаризованных моделей в основном по классическому методу с использованием передаточных функций. Такой метод позволяет наиболее простыми средствами исследовать динамику сложных следящих приводов, описываемых дифференциальными уравнениями высоких порядков. Глава включает методику расчета следящих приводов дроссельного управления и примеры конкретных станочных копировальных приводов.  [c.4]

На современном этапе развития технических средств автоматического управления, к которым относятся и сервомеханизмы, наилучшие результаты, удовлетворяющие сформулированным выше общим требованиям, дают электрогидравлические сервомеханизмы. Эти комбинированные (по виду потребляемой энергии) сервомеханизмы сочетают в себе, как показано на рис. 5.1, электрические входные и гидравлические оконечные элементы. Это означает, что первоначальные усилители и управляющие элементы таких сервомеханизмов построены на электрических принципах, а для построения основных усилителей мощности и исполнительных механизмов (двигателей) использованы законы гидравлики. Обратные связи в электрогидравлических сервомеханизмах могут быть как электрическими, так и гидравлическими. Объединение электрических и гидравлических элементов в один конструктивный комплекс позволяет создать высокочувствительные, точные сервомеханизмы с высоким быстродействием и большой выходной мощностью при малых размерах и небольшом весе всего устройства- Последние два фактора имеют немаловажное значение для сервомеханизмов, применяемых в системах управления нестационарными объектами, например, летательными аппаратами.  [c.311]


Гидравлический привод в технике начали применять сравнительно недавно. Лишь в конце прошлого столетия инженеры Русского металлургического завода впервые использовали силовой гидравлический привод для управления башенными орудиями на военных кораблях. Однако более широкое распространение в технике он получил значительно позднее. Лишь в 20-х годах нашего столетия гидравлический привод нашел применение в оснащении высокопроизводительных металлорежущих станков. Здесь он оказался наиболее совершенным техническим средством, позволившим механизировать и автоматизировать слол<ные процессы, а также решить ряд важнейших проблем, таких как бесступенчатое регулирование скорости, плавность подачи и др.  [c.5]

Гидравлические средства управления находят все большее применение при полной или частичной автоматизации рабочих циклов любой сложности. Достоинства их самосмазываемость, долговечность и надежность действия возможность плавного бесступенчатого регулирования скоростей на ходу без останова рабочих органов автоматическое предохранение от перегрузок и поломок возможность передачи больших усилий удобное дистанционное управление обеспечение быстрой переналадки станков и других элементов автоматической линии. Гидравлические системы применяют в сочетании с гидроэлектрическим управлением. Гидравлические средства управления подразделяют на датчики командных импульсов, преобразо-  [c.277]

ИПХТ-М представляет собой комплексный агрегат, в общем случае включающий в себя электротехническое, вакуумное или газовое оборудование, различные механизмы с электромеханическим или гидравлическим приводом, средства управления и контроля процессом плавки. Поэтому персонал, обслуживающий электропечь, должен иметь достаточно высокую квалификацию.  [c.94]

В настоящее время в машиностроении и других отраслях промышленности все более широкое применение находят пневматические и гидравлические средства автоматизации различных технологических процессов. Объясняется это рядом важных преимуществ, присущих гидропневмоавтоматике, основные из которых — высокая степень надежности, возможность создания самых разнообразных систем управления с применением стандартных узлов и элементов, пожаро- и взрывобезопасность.  [c.45]

Гидравлические следящие приводы эффективно используются в сочетании с электрическими средствами управления, что позволяет использовать положительные стороны электрической (ди-станционность передачи сигналов управления, простота монтажа системы, возможность легкого введения корректирующих сигналов для улучшения выходных характеристик и др.) и гидравлической системы.  [c.3]

Применение электрических средств управления гидравлическими следящими приводами не изменяет принцип работы этих приводов, однако связано с трудностями конструирования и расчета злектрогидравлических преобразователей, включающих электромагнитные управляющие элементы и гидравлические усилители. Поэтому в главе V, посвященной рассмотрению электро-гидравлических следящих механизмов, основное внимание уделено изложению принципа действия и исследованию статики и динамики электромагнитных пропорциональных управляющих элементов, как наиболее распространенных, в том числе поляризованных и нейтральных. Далее в главе рассматриваются особенности конструкции гидравлических усилителей электрогид-равлических преобразователей и исследуются характеристики гидравлических усилителей со струйной трубкой.  [c.5]

Машины, имеющие чисто гидравлическую систему управления, сложно связывать со средствами автоматизации из-за отсутствия электроавтоматики. Число типов и моделей машин, установленных в цехе, должно быть минимальным, о упрощает обслуживание автоматизированных систем, вследствие унификации систем управления и стандартизации средств автоматизации, повьйыает надежность работы оборудования.  [c.236]

Наиболее практичными средствами управления последовательностью фаз работы агрегатов линии являются гидравлические устройства. Компоновка и количество оборудования автоматической линии определяют объем работы систем управления. Сблокированная автоматическая линия (т. е. состоящая из одного участка) не имеет внешних средств связи (цепей) в системах комплексного управления линии. Несблокированная автоматическая линия, состоящая из скольких участков, должна иметь внешние средства связи в системах комплексного управления линии.  [c.69]

Управление рабочим хдаклом ТПА с помощью кулачкового распределительного вала (РВ) до настоящего времени в целом ряде случаев остается наиболее экономичньас (например, в крупносерийном и массовом производстве), несмотря на достижения в области гидравлических и элекзронных средств управления.  [c.376]

Радиационная стойкость смазочных масел и гидравлических жидкостей. Практические аспекты влияния излучения высокой энергии на смазочные масла и гидравлические жидкости относятся главным образом к ядерным реакторам. В стационарном энергетическом реакторе, в ядер-ных силовых установках таких транспортных средств, как подводные и надводные суда, можно обеспечить оптимальную защиту, поэтому применительно к смазочным материалам или жидкостям проблема радиационной стойкости возникает только в тех случаях, когда они находятся вблизи активной зоны. Такие условия имеют место в циркуляционных насосах теплоносителя, загрузочных, разгрузочных и обслуживающих механизмах реактора, механизмах управления регулирующими стержнями и в оборудовании для обнаружения неисправных тепловыделяющих элементов. Требования к смазке для этих систем были рассмотрены Фревингом и Скарлетом [10], а также Хаусманом и Бузером [14]. Механизмы второго контура (насосы, турбины и генераторы) в большинстве случаев располагаются таким образом, что доза облучения уменьшается на 3—6 порядков (табл. 3.3).  [c.126]

Каскадные аварии в ЭЭС в большинстве случаев сопровождаются нарушениями устойчивости параллельной работы электростанций или отдельных частей системы по отношению друг к другу, а в ТПСУ -явлениями гидравлического удара. По мере развития СЭ - расширения охватываемой территории, повышения концентрации мощностей по производству (добыче, получению) и преобразованию (переработке) соответствующей продукции, повышения пропускной способности линий электропередачи и трубопроводов - наряду с общим повышением надежности систем (благодаря улучшению условий взаимопомощи частей системы) повышается вероятность каскадных аварий. С одной стороны, это связано с усложнением структуры и конфигурации СЭ при ухудшении в отдельных случаях параметров оборудования, определяющих его поведение при нестационарных процессах (например, электрических и электромеханических характеристик генерирующего оборудования ЭЭС при повышении его мощности и степени использования электротехнических материалов), повышением напряженности режимов при функционировании СЭ (вследствие ограниченности резервов и запасов различного рода), усложнением структуры и функций средств автоматического и автоматизированного управления СЭ, а с другой стороны, - с усилением режимной взаимозависимости частей системы, которая оказывается тем большей, чем выше пропускная способность линий электропередачи и трубопроводов [39,101 и др.].  [c.66]

Для того чтобы освободить рабочих от затраты лишних усилий, снизить утомляемость, в последние годы в машиностроении все шире используются пневматические и гидравлические зажимы, автоматические поворотные приспособления и головки, автоматическое управление циклом работы механизмов, механизированные подъемные и транспортирующие устройства, защитные средства, предупреждающие несчасг-ные случаи, автоматические контрольные и измерительные приборы и установки.  [c.257]


Передачи F 16 Н [прерывистого (шагового) движения <27/00-31/00 автоматическое изменение скоросги 29/22 реверсивные зубчатые 3/00-3/78) канатные (7/04 с переменной скоростью 9/00-9/22 шкивы 55/50) планетарные гидростатические 39/40 зубчатые (1/28-1/48 механизмы для реверсирования и управления 59/00-63/00 регулируемые 3/44-3/78) механические в сочетании с гидравлическими или пневматическими 47/04, 47/08-47/12 узлы и детали 57/08-57/10 фрикционные 13/06-13/08, 15/48-15/56) пневматические (41/00-47/12 гидродинамического типа 41/00-41/32) ременные 7/02 рычажные (21/00-21/54 комбинированные с зубчатыми 37/12) фрикционные (вращения 13/00-15/00 механизмы (управления 17/00-17/08 с переменной скоростью или реверсивные 15/00-15/56, 59-00-63/00) конструктивные элементы 55/32-55/56 механические 37/02-37/16) цепные (7/06 звездочки для передачи движения 55/30) со свободным ходом 29/00-31/(Ю смазывание и охлаждение 57/04] испытание G 01 М 13/02 в клапанных распределительных механизмах F 01 L 1/12-1/18, 31/10-31/16 механические, сочетание с DB F 02 В 61/00 в шшучцих машинах В 41 J 23/00-23/38 планетарные (на велосипедах, мотоциклах и т. п. В 62 М 11/14-11/18 в лебедочных механизмах В 66 D 1/22, 1/70 в транспортных средствах на гусеничном ходу В 62 D 11/10) пневматические <в трансмиссиях транспортных средств В 60 К 17/10 локомотивов В 61 С 9/22 в копировальных станках В 24 В 47/00-47/28) в приборах G 12 В 1/00-1/04 в пусковых устройствах DB F 02 N 15/02-15/08 расточных и сверлильных станков В 23 В 47/02-47/24 реечные рулевых устройствах автомобилей, ракторов и т. п. В 62 D 3/12, 5/22) ременные (велосипедов, мотоциклов и т. п. В 62 (М 9/00-9/16 защитные устройства для них J 13/00-13/06) в локомотивах и моторных вагонах В 61 С 9/06 для сверлильных станков В 23 В 47/16)  [c.133]

Сервомеханизмы [гидравлические или пневматические F 15 В (комбинированные с телеприводами 17/(00-02) конструктивные элементы 13/(00-16) системы 9/00-11/22) F 16 К <в обратных 15/18 в предохранительных (сбросных) 17/32) клапанах-, в приводах (рулей на судах В 63 Н 25/(14-32) тормозов В 60 Т 13/(00-74)) в рулевых устройствах автомобилей, тракторов и т. п. В 62 D 5/00-5/32 в системах (регулирования горения F 23 N 3/08 управление тяговыми электродвигателями транспортных средств В 60 L 15/14) следящего действия G 05 G 19/00 для управления коробками передач транспортных средств F 16 Н (59-63)/00 в устройствах управления ДВС F 02 D 11/(06-10)] Сервоусилители В 64 С <в приводах регулируемых лопастей несущих винтов 27/(59-635) в системах управления самолетов и т. п. 13/(38-50)) Сердечники [В 28 В (для изготовления изделий трубчатых 21/(86-88) для производства фасонных изделий из материалов 7/28-7/34) керамических крыльев шин В 60 С 15/(04-05) В 65 Н <в намоточных или укладочных устройствах, замена и снятие 67/(00-08) обертывание наматыванием 81/00 для хранения полотнищ, лент и нитевидных материалов 75/(02-32)) В 29 (для резиновых покрышек, изготовление и пропитка D 30/(48-50) для формования пластических материалов С 33/76)] Серьги [F 16 G <как детали машин 15/(06-08) для цепей 15/(06-08)) сцепные транспортных средств (В 60 D 1/02 ж.-д. В 61 G 1/36-1/38)] Сетки [из пластических материалов В 29 D 28/00, 31/00 подкладочные для гибки абразивных материалов В 24 D 11/02 предохранительные для осветительных устройств <15/02 крепление 17/(00-06)) F 21 V проволочные (изготовление 27/(00-22) устройства и инструменты для обработки 33/(00-04) из проволочных колец 31/00) В 21 F светогазокалильные F 21 Н]  [c.173]


Смотреть страницы где упоминается термин Гидравлические средства управления : [c.81]    [c.213]    [c.64]    [c.65]    [c.148]    [c.191]    [c.198]    [c.5]   
Смотреть главы в:

Ремонт промышленного оборудования  -> Гидравлические средства управления


Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.0 ]



ПОИСК



Автоматические Гидравлические средства управлени

Средства управления

Управление гидравлическое



© 2025 Mash-xxl.info Реклама на сайте